Skip to main content
Advanced Search

Filters: Tags: plants (organisms) (X) > Types: Downloadable (X)

19 results (112ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset contains data pertaining to ground surface cover in a 30 meter radius around a random selection of points within San Diego County, California. These data were obtained from aerial imagery for the years 1953 and 2016 and were used to assess changes in cover type over time. These data support the following publication: Syphard, A.D., Brennan, T.J. and Keeley, J.E., 2019. Extent and drivers of vegetation type conversion in Southern California chaparral. Ecosphere, 10(7), p.e02796.
We assessed the impacts of co-occurring invasive plant species on fire regimes and postfire native communities in the Mojave Desert, western USA by analyzing the distribution and co-occurrence patterns of three invasive annual grasses known to alter fuel conditions and community structure: Red Brome (Bromus rubens), Cheatgrass (Bromus tectorum), and Mediterranean grass (Schismus spp.: Schismus arabicus and Schismus barbatus), and an invasive forb, red stemmed filaree (Erodium cicutarium) which can dominate postfire sites. We developed species distribution models (SDMs) for each of the four taxa and analyzed field plot data to assess the relationship between invasives and fire frequency, years postfire, and the impacts...
thumbnail
This is the evaluation data associated with the project: “Status and Trends of Deciduous Communities in the Bighorn Mountains”. The aim of the study is to assess the current trends of deciduous communities in the Bighorn National Forest in north-central Wyoming. The data here represents phase I of the project, completed in FY2017. The USGS created a synthesis map of coniferous and deciduous communities in the Bighorn Mountains of Wyoming using a species distribution modeling approach developed in the Wyoming Landscape Conservation Initiative (WLCI) (Assal et al. 2015). The modeling framework utilized a number of topographic covariates and temporal remote sensing data from the early, mid and late growing season to...
This model was constructed to model the risk of invasion by exotic plant species. Roads may directly influence exotic plant dispersal via disturbance during road construction or via alterations in soil regimes. For example, in Californian serpentine soil ecosystems, exotic plant species can be found up to 1km from the nearest road and Russian thistle (Salsola kali), an exotic forb growing along roads, is wind-dispersed over distances greater than 4km. Roads may also indirectly facilitate the dispersal of exotic grasses, such as crested wheatgrass (Agropyron cristatum), via human seeding along road verges or in burned areas near roads as a management strategy to curb the establishment of less desirable exotic grass...
thumbnail
This raster dataset represents spatially explicit predictions of burn severity (dNBRPredict.tif) in the Mojave Desert based on models developed from data on the difference normalized burn ratio (dNBR) within perimeters of fires greater than 405 hectares that burned between 1984 to 2010. Raster resolution equals 30 meters, projection equals UTM Zone 11N.
thumbnail
This raster dataset represents spatially explicit predictions of probability of ignition in the Mojave Desert based on models developed from data on perimeters of fires greater than 405 hectares that burned between 1972 to 2010. Raster resolution equals 30 meters, projection equals UTM Zone 11N.
thumbnail
This is the probability of occurrence model output for coniferous vegetation cover associated with the project: “Status and Trends of Deciduous Communities in the Bighorn Mountains”. The aim of the study is to assess the current trends of deciduous communities in the Bighorn National Forest in north-central Wyoming. The data here represents phase I of the project, completed in FY2017. The USGS created a synthesis map of coniferous and deciduous communities in the Bighorn Mountains of Wyoming using a species distribution modeling approach developed in the Wyoming Landscape Conservation Initiative (WLCI) (Assal et al. 2015). The modeling framework utilized a number of topographic covariates and temporal remote sensing...
thumbnail
These data were compiled to provide seed transfer and native plant materials development guidance to managers and practitioners across the Colorado Plateau and in adjacent regions. This data release contains empirical seed transfer zones derived from molecular genetic data for Cleome serrulata (syn. Peritoma serrulata), Heliomeris multiflora, and Astragalus lonchocarpus. These species show distinct population structure (i.e., genetic differentiation) across their ranges; as such, seed transfer zones reflect both patterns of genetic differentiation and information on each species' unique adaptations to climatic gradients. These shapefile data may support successful restoration outcomes if, for example, seed transfer...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Arizona, Astragalus lonchocarpus, Botany, Cleome serrulata (syn. Peritoma serrulata), Colorado, All tags...
thumbnail
These data were compiled so that annual wildfire could be modelled across the sagebrush region in the western United States. Our goal was to understand how wildfire probability relates to climate and fuel conditions across the entire sagebrush region. To do this we developed a statistical model that represents the relationship between annual wildfire probability and a small number of climate and fuel variables. Specifically, created predictions of wildfire probability using a biologically plausible logistic regression model that related wildfire probability to mean temperature, annual precipitation, the proportion summer precipitation (PSP), and aboveground biomass of annual herbaceous plants and perennial herbaceous...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: Arizona, Botany, California, Climatology, Colorado, All tags...
thumbnail
This is the probability of occurrence model output for deciduous vegetation cover associated with the project: “Status and Trends of Deciduous Communities in the Bighorn Mountains”. The aim of the study is to assess the current trends of deciduous communities in the Bighorn National Forest in north-central Wyoming. The data here represents phase I of the project, completed in FY2017. The USGS created a synthesis map of coniferous and deciduous communities in the Bighorn Mountains of Wyoming using a species distribution modeling approach developed in the Wyoming Landscape Conservation Initiative (WLCI) (Assal et al. 2015). The modeling framework utilized a number of topographic covariates and temporal remote sensing...
thumbnail
This is the synthesis cover map derived from the probability of occurrence models associated with the project: “Status and Trends of Deciduous Communities in the Bighorn Mountains”. The aim of the study is to assess the current trends of deciduous communities in the Bighorn National Forest in north-central Wyoming. The data here represents phase I of the project, completed in FY2017. The USGS created a synthesis map of coniferous and deciduous communities in the Bighorn Mountains of Wyoming using a species distribution modeling approach developed in the Wyoming Landscape Conservation Initiative (WLCI) (Assal et al. 2015). The modeling framework utilized a number of topographic covariates and temporal remote sensing...
thumbnail
This raster dataset represents spatially explicit predictions of fire frequency in the Mojave Desert based on models developed from data on perimeters of fires greater than 405 hectares that burned between 1972 through 2010. Raster resolution equals 30 meters, projection equals UTM Zone 11N.
thumbnail
This is the input data associated with the project: “Status and Trends of Deciduous Communities in the Bighorn Mountains”. The aim of the study is to assess the current trends of deciduous communities in the Bighorn National Forest in north-central Wyoming. The data here represents phase I of the project, completed in FY2017. The USGS created a synthesis map of coniferous and deciduous communities in the Bighorn Mountains of Wyoming using a species distribution modeling approach developed in the Wyoming Landscape Conservation Initiative (WLCI) (Assal et al. 2015). The modeling framework utilized a number of topographic covariates and temporal remote sensing data from the early, mid and late growing season to capitalize...
thumbnail
This is the study area associated with the project: “Status and Trends of Deciduous Communities in the Bighorn Mountains”. The aim of the study is to assess the current trends of deciduous communities in the Bighorn National Forest in north-central Wyoming. The data here represents phase I of the project, completed in FY2017. The USGS created a synthesis map of coniferous and deciduous communities in the Bighorn Mountains of Wyoming using a species distribution modeling approach developed in the Wyoming Landscape Conservation Initiative (WLCI) (Assal et al. 2015). The modeling framework utilized a number of topographic covariates and temporal remote sensing data from the early, mid and late growing season to capitalize...


    map background search result map search result map Exotic Plant Invasion Risk in the Western United States Bighorn Mountains Forest Mapping - Model Evaluation Data Bighorn Mountains Forest Mapping - Model Input Data Bighorn Mountains Forest Mapping - Study Area Bighorn Mountains Forest Mapping - Probability of Occurrence Model for Coniferous Cover Bighorn Mountains Forest Mapping - Probability of Occurrence Model for Deciduous Cover Bighorn Mountains Forest Mapping - Synthesis Cover Map Vegetation type conversion in chaparral in San Diego County, California, USA between 1953 and 2016 Invasive Plant Cover in the Mojave Desert, 2009 - 2013 (ver. 2.0, April 2021) Species distribution model of the invasive annual grass Bromus rubens (red brome) in the Mojave Desert Species distribution model of the invasive annual forb Erodium cicutarium (red-stemmed filaree) in the Mojave Desert Species distribution model of the invasive annual grass Schismus spp (Mediterranean split grass) in the Mojave Desert Species distribution model of the invasive annual grass Bromus tectorum (cheatgrass) in the Mojave Desert Predictive Model of Burn Severity (dNBR) in the Mojave Desert Predictive Model of Fire Frequency in the Mojave Desert Predictive Model of Probability of Ignition in the Mojave Desert Mojave Desert Ecoregion Genetically informed seed transfer zones for Astragalus lonchocarpus, Cleome serrulata, and Heliomeris multiflora across the Colorado Plateau and adjacent regions Observed wildfire frequency, modelled wildfire probability, climate, and fine fuels across the big sagebrush region in the western United States Bighorn Mountains Forest Mapping - Model Evaluation Data Vegetation type conversion in chaparral in San Diego County, California, USA between 1953 and 2016 Bighorn Mountains Forest Mapping - Model Input Data Bighorn Mountains Forest Mapping - Study Area Bighorn Mountains Forest Mapping - Probability of Occurrence Model for Coniferous Cover Bighorn Mountains Forest Mapping - Probability of Occurrence Model for Deciduous Cover Bighorn Mountains Forest Mapping - Synthesis Cover Map Invasive Plant Cover in the Mojave Desert, 2009 - 2013 (ver. 2.0, April 2021) Mojave Desert Ecoregion Predictive Model of Burn Severity (dNBR) in the Mojave Desert Predictive Model of Fire Frequency in the Mojave Desert Predictive Model of Probability of Ignition in the Mojave Desert Species distribution model of the invasive annual grass Bromus rubens (red brome) in the Mojave Desert Species distribution model of the invasive annual forb Erodium cicutarium (red-stemmed filaree) in the Mojave Desert Species distribution model of the invasive annual grass Schismus spp (Mediterranean split grass) in the Mojave Desert Species distribution model of the invasive annual grass Bromus tectorum (cheatgrass) in the Mojave Desert Genetically informed seed transfer zones for Astragalus lonchocarpus, Cleome serrulata, and Heliomeris multiflora across the Colorado Plateau and adjacent regions Observed wildfire frequency, modelled wildfire probability, climate, and fine fuels across the big sagebrush region in the western United States Exotic Plant Invasion Risk in the Western United States