Skip to main content
Advanced Search

Filters: Tags: precipitation (atmospheric) (X)

219 results (49ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates quantiles of change factors derived from various...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates fitted projected future precipitation depths derived...
The U.S. Geological Survey (USGS) has developed the PRObability of Streamflow PERmanence (PROSPER) model, a GIS raster-based empirical model that provides streamflow permanence probabilities (probabilistic predictions) of a stream channel having year-round flow for any unregulated and minimally-impaired stream channel in the Pacific Northwest region, U.S. The model provides annual predictions for 2004-2016 at a 30-m spatial resolution based on monthly or annually updated values of climatic conditions and static physiographic variables associated with the upstream basin. These values and variables, known as Continuous Parameter Grids, or CPGs, were used as the predictor variables in the model. The CPGs referenced...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. An R script (create_boxplot.R) is provided which generates...
thumbnail
This child page contains the requisite folder structure along with model input and output data used in the model validation process for two Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) models during the validation period of the study detailed in the associated Scientific Investigations Report "Comparison of Storm Runoff Models for a Small Watershed in an Urban Metropolitan Area, Albuquerque, New Mexico" (Shephard and Douglas-Mankin, 2020). One model uses a curve-number (CN) based loss method approach, and the other model uses an initial and constant (IC) infiltration rate loss method. Each model was used to simulate storm runoff in the Hahn Arroyo Watershed, an urbanized watershed with concrete...
thumbnail
The U.S. Geological Survey (USGS) calculated multiple basin characteristics as part of preparing the Upper Colorado & Gunnison Rivers Pilot StreamStats application. These datasets are raster representations of various environmental, geological, and land use attributes within the Upper Colorado & Gunnison Rivers study area (also known as the Next-Generation Water Observing System, or NGWOS), and will be served in the National StreamStats application (https://streamstats.usgs.gov) to describe delineated watersheds. The StreamStats application provides access to spatial analysis tools that are useful for water-resources planning and management, and for engineering and design purposes. The map-based user interface can...
thumbnail
Rainfall measurements were collected in and near the Dolan Fire burn area, Los Padres National Forest, California. The Dolan Fire ignited on August 18, 2020. By the time of full containment on December 31, 2020, the fire had burned 518 km2 (128,050 acres) in Monterey County. Post-fire debris flows occurred in many watersheds burned by the Dolan Fire during the first post-fire wet season, in winter 2021. The U.S. Geological Survey (USGS) installed seven rain gages within the Dolan Fire burn area in October 2021 to measure rainfall during the second post-fire wet season. The USGS gratefully acknowledges permission granted by Los Padres National Forest for the collection of these data.
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 NOAA Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2050-89 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates quantiles of change...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the periods 2020-59 (centered in the year 2040) and 2050-89 (centered in the year 2070) as compared to the 1966-2005 historical...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 NOAA Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2038-42 (centered in the year 2040) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates projected future...
thumbnail
This data release contains monthly 270-meter gridded Basin Characterization Model (BCMv8) climate inputs and hydrologic outputs for San Diego (SD). Gridded climate inputs include: precipitation (ppt), minimum temperature (tmn), maximum temperature (tmx), and potential evapotranspiration (pet). Gridded hydrologic variables include: actual evapotranspiration (aet), climatic water deficit (cwd), snowpack (pck), recharge (rch), runoff (run), and soil storage (str). The units for temperature variables are degrees Celsius, and all other variables are in millimeters. Monthly historical variables from water years 1896 to 2019 are summarized into water year files and long-term average summaries for water years 1981-2010....
thumbnail
This data release documents the datasets and procedures used to update the Los Angeles Basin Watershed Model (LABWM) (Hevesi and Johnson, 2016) from INFIL3.0 (USGS, 2008a, 2008b) to INFIL4.0. The LABWM provides gridded monthly infiltration, evaporation, recharge, and runoff estimates for the Los Angeles region using the water balance recharge model, INFIL. INFIL is a grid-based, distributed-parameter, deterministic model that uses a daily time step to simulate the temporal and spatial distribution of the root-zone water balance, including net infiltration and potential recharge across the lower boundary of the root zone. INFIL3.0 was originally released and documented in 2008 (USGS, 2008a) and has been used and...
thumbnail
The Republic of the Marshall Islands (RMI) is a sovereign Small Island State in the tropical central North Pacific Ocean. RMI is a nation of more than thirty atolls and islands, most of which are inhabited, dispersed across an exclusive economic zone (EEZ) over 2 million square kilometers. This data release contains raster datasets for vegetation and water monitoring including Normalized Difference Vegetation Index (NDVI), Landscape Water Requirement Satisfaction Index (L-WRSI), and Soil Moisture Index (SMI) for selected locations and precipitation (dekadal (10-day) sum) for the entire RMI from 2017-2022. These data were compiled to support a 2022-2023 U.S. Geological Survey project for developing methods to apply...
thumbnail
This dataset provides estimates of annual and seasonal precipitation for selected Chesapeake Bay watersheds. Season 1 is November-February; season 2 is March-June; and season 3 is July-October.
thumbnail
This dataset was produced in by the Delaware Geological survey in cooperation with the US Geological Survey and Delaware Department of Transportation for the purpose of delineating gage basins and performing hydrologic analysis in the Delaware 2020 StreamStats application. These datasets are raster representations of the fundamental dataset layers necessary for the functionality of StreamStats application within the Delaware StreamStats 2020 study area. The StreamStats application provides access to spatial analytical tools that are useful for water-resources planning and management, and for engineering and design purposes. The map-based user interface can be used to delineate drainage areas, get basin characteristics...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled CESM1-BGC Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled MIROC5 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the fifth...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled CCSM4 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the fifth...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates fitted projected future precipitation depths derived...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates fitted historical precipitation depths derived...


map background search result map search result map Seasonal precipitation for selected Chesapeake Bay watersheds HEC-HMS Validation Period Input and Output Data Basin Characteristic Layers for the Upper Colorado & Gunnison Rivers Pilot Project for StreamStats 2020 Fundamental Dataset Rasters for Delaware StreamStats 2020 San Diego Monthly BCMv8 R script to create boxplots of change factors by NOAA Atlas 14 station, or for all stations in an ArcHydro Enhanced Database (AHED) basin or county (create_boxplot.R) Spreadsheet of fitted projected future precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from CORDEX downscaled climate dataset (DDF_CORDEX_future.xlsx) Spreadsheet of fitted projected future precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from LOCA downscaled climate dataset (DDF_LOCA_future.xlsx) Spreadsheet of fitted historical precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from MACA downscaled climate dataset (DDF_MACA_historical.xlsx) Spreadsheet of quantiles of change factors at 174 NOAA Atlas 14 stations in central and south Florida derived from various downscaled climate datasets considering only the best models and all future emission scenarios evaluated (CFquantiles_future_to_historical_best_models_allRCPs.xlsx). Los Angeles Basin Watershed Model (LABWM) using INFIL4.0 Rain measurements in the Dolan Fire Area, Los Padres National Forest, California, 2021 to 2022 Vegetation and Water Monitoring Datasets for selected locations in the Republic of the Marshall Islands from 2017-2022 Spreadsheet of quantiles of change factors at 242 NOAA Atlas 14 stations in Florida derived from downscaled climate datasets considering all models, and the RCP8.5 and SSP5-8.5 future emission scenarios (CFquantiles_2070_to_historical_all_models_RCP8.5.xlsx) Spreadsheet of projected future precipitation depths at 170 NOAA Atlas 14 stations in Florida fitted to extreme-precipitation events derived from the Analog Resampling and Statistical Scaling Method by Jupiter Intelligence using the Weather Research and Forecasting Model (JupiterWRF) downscaled climate dataset (DDF_JupiterWRF_future_2040.xlsx) R script to create boxplots of change factors by NOAA Atlas 14 station, or for all stations in a Florida basin or county (create_boxplot.R) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CCSM4 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CESM1-BGC Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model MIROC5 HEC-HMS Validation Period Input and Output Data Rain measurements in the Dolan Fire Area, Los Padres National Forest, California, 2021 to 2022 Los Angeles Basin Watershed Model (LABWM) using INFIL4.0 San Diego Monthly BCMv8 Fundamental Dataset Rasters for Delaware StreamStats 2020 Basin Characteristic Layers for the Upper Colorado & Gunnison Rivers Pilot Project for StreamStats 2020 R script to create boxplots of change factors by NOAA Atlas 14 station, or for all stations in an ArcHydro Enhanced Database (AHED) basin or county (create_boxplot.R) Spreadsheet of fitted projected future precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from CORDEX downscaled climate dataset (DDF_CORDEX_future.xlsx) Spreadsheet of fitted projected future precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from LOCA downscaled climate dataset (DDF_LOCA_future.xlsx) Spreadsheet of fitted historical precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from MACA downscaled climate dataset (DDF_MACA_historical.xlsx) Spreadsheet of quantiles of change factors at 174 NOAA Atlas 14 stations in central and south Florida derived from various downscaled climate datasets considering only the best models and all future emission scenarios evaluated (CFquantiles_future_to_historical_best_models_allRCPs.xlsx). Seasonal precipitation for selected Chesapeake Bay watersheds Spreadsheet of quantiles of change factors at 242 NOAA Atlas 14 stations in Florida derived from downscaled climate datasets considering all models, and the RCP8.5 and SSP5-8.5 future emission scenarios (CFquantiles_2070_to_historical_all_models_RCP8.5.xlsx) Spreadsheet of projected future precipitation depths at 170 NOAA Atlas 14 stations in Florida fitted to extreme-precipitation events derived from the Analog Resampling and Statistical Scaling Method by Jupiter Intelligence using the Weather Research and Forecasting Model (JupiterWRF) downscaled climate dataset (DDF_JupiterWRF_future_2040.xlsx) R script to create boxplots of change factors by NOAA Atlas 14 station, or for all stations in a Florida basin or county (create_boxplot.R) Vegetation and Water Monitoring Datasets for selected locations in the Republic of the Marshall Islands from 2017-2022 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CCSM4 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CESM1-BGC Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model MIROC5