Skip to main content
Advanced Search

Filters: Tags: precipitation (atmospheric) (X)

219 results (209ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The U.S. Geological Survey (USGS) has developed the PRObability of Streamflow PERmanence (PROSPER) model, a GIS raster-based empirical model that provides streamflow permanence probabilities (probabilistic predictions) of a stream channel having year-round flow for any unregulated and minimally-impaired stream channel in the Pacific Northwest region, U.S. The model provides annual predictions for 2004-2016 at a 30-m spatial resolution based on monthly or annually updated values of climatic conditions and static physiographic variables associated with the upstream basin. These values and variables, known as Continuous Parameter Grids, or CPGs, were used as the predictor variables in the model. For purposes of organization,...
thumbnail
Bias-corrected daily precipitation at 1-kilometer (km) scale is provided for Puerto Rico. The Weather Research and Forecasting (WRF) model was used by Bowden and others (2018) to dynamically downscale the Centre National de Recherches Meteorologiques-CERFACS (CNRM) model for the historical period 1985-2005. Total hourly precipitation data (convective plus non-convective) for the innnermost domain in Bowden and others (2018; their domain 3) was aggregated to a daily timestep and then bias-corrected using Multiplicative Quantile Delta Mapping (MQDM; Cannon and others, 2015) with Daymet v4 as the observational gridded precipitation dataset (Thornton and others, 2020). The bias-corrected daily precipitation data is...
thumbnail
Reactive nitrogen is transported from the atmosphere to the landscape as wet and dry deposition that contributes to annual nitrogen loads to the Chesapeake Bay. Estimates of atmospheric inorganic nitrogen deposition to the Chesapeake Bay watershed during 1950 to 2050 are presented, and are based on field measurements, model simulations, statistical relations, and surrogate constituents used for estimates. Wet atmospheric nitrogen deposition has generally been quantified from weekly precipitation sample collections, whereas dry atmospheric nitrogen deposition has been simulated by a model at an hourly time step.
thumbnail
These data were compiled to assess potential changes in the climatic suitability for 66 species (dominant and associate plant species) and forecast climate exposure for 29 major plant communities within major plant communities in the southwestern United States. An objective of our study was that species within plant communities have unique climate suitability signatures and forecast changes in climatic suitability will not be uniform within the species respective communities or among species within the community. The climate suitability spatial models were developed under a modern baseline (1960-90) and future climate scenario (2041-2060) using Maxent and WorldClim temperature and precipitation variables. Plant...
thumbnail
This data release contains monthly 270-meter gridded Basin Characterization Model (BCMv8) climate inputs and hydrologic outputs for Mad River (MRD). Gridded climate inputs include: precipitation (ppt), minimum temperature (tmn), maximum temperature (tmx), and potential evapotranspiration (pet). Gridded hydrologic variables include: actual evapotranspiration (aet), climatic water deficit (cwd), snowpack (pck), recharge (rch), runoff (run), and soil storage (str). The units for temperature variables are degrees Celsius, and all other variables are in millimeters. Monthly historical variables from water years 1896 to 2019 are summarized into water year files and long-term average summaries for water years 1981-2010....
thumbnail
This data release contains monthly 270-meter gridded Basin Characterization Model (BCMv8) climate inputs and hydrologic outputs for South Bay (SBay). Gridded climate inputs include: precipitation (ppt), minimum temperature (tmn), maximum temperature (tmx), and potential evapotranspiration (pet). Gridded hydrologic variables include: actual evapotranspiration (aet), climatic water deficit (cwd), snowpack (pck), recharge (rch), runoff (run), and soil storage (str). The units for temperature variables are degrees Celsius, and all other variables are in millimeters. Monthly historical variables from water years 1896 to 2019 are summarized into water year files and long-term average summaries for water years 1981-2010....
thumbnail
This data release contains monthly 270-meter gridded Basin Characterization Model (BCMv8) climate inputs and hydrologic outputs for South Delta (SDT). Gridded climate inputs include: precipitation (ppt), minimum temperature (tmn), maximum temperature (tmx), and potential evapotranspiration (pet). Gridded hydrologic variables include: actual evapotranspiration (aet), climatic water deficit (cwd), snowpack (pck), recharge (rch), runoff (run), and soil storage (str). The units for temperature variables are degrees Celsius, and all other variables are in millimeters. Monthly historical variables from water years 1896 to 2019 are summarized into water year files and long-term average summaries for water years 1981-2010....
thumbnail
This data release provides computed rainfall (rain total, duration, intensity, erosivity and antecedent rainfall) and flow (flow volume, flow-weighted mean concentrations, total loads, and total yields) metrics from monitored precipitation, discharge, and water quality (nutrients and sediment concentrations) data collected at U.S. Geological Survey edge-of-field (EOF) monitoring sites located in five Great Lakes States (Wisconsin, Michigan, Ohio, Indiana, and New York). EOF monitoring sites are installed at the edge of agricultural fields, either on the field surface or using subsurface tiles, where runoff can be intercepted and channeled through monitoring equipment before it enters the natural stream system. These...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 NOAA Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2050-89 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates quantiles of change...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 NOAA Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2020-59 (centered in the year 2040) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates quantiles of change...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2020-59 (centered in 2040) or to the period 2050-89 (centered in the year 2070) as compared to the 1966-2005...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the periods 2020-59 (centered in the year 2040) and 2050-89 (centered in the year 2070) as compared to the 1966-2005 historical...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 NOAA Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2068-72 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates change factors derived...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 NOAA Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2038-42 (centered in the year 2040) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates change factors derived...
thumbnail
This data release contains historical SnowModel (Liston and Elder, 2006) output for the Crown of the Continent and surrounding areas in Montana and Idaho, USA; and Alberta and British Columbia, Canada from September 1, 1981 through August 31, 2020. Fifteen daily variables were simulated or derived for this release: (1) snow water equivalent (swed), (2) liquid precipitation (rpre), (3) solid precipitation (spre), (4) albedo (albd), (5) glacial ice melt (glmt), (6) total precipitation (prec), (7) runoff (roff), (8) snow covered area (sca), (9) snow density (sden), (10) snowmelt (smlt), (11) snow depth (snod), (12) snow sublimation (ssub), (13) air temperature (tair), (14) wind speed (wspd), and (15) wind direction...
thumbnail
This dataset provides a shapefile of surface water diversions directly to agricultural fields in the Russian River Coupled Groundwater and Surface-Water Flow Model (GSFLOW) model.
thumbnail
These data were compiled for evaluating plant water use, or river-reach level evapotranspiration (ET) data, in the unrestored riparian corridor of the Colorado River delta as specified under Minute 319 of the 1944 Water Treaty. Additionally, these data were compiled for evaluating restoration-level data in Reach 2 and Reach 4, as specified under Minute 323 of the 1944 Water Treaty. Objectives of our study were to measure the peak growing season evapotranspiration (ET) for the average of months in summer-fall (May to October) for the seven reaches, for the full riparian corridor, and for four restoration sites, from 2019 through 2022. The seven reach areas from the Northerly International Boundary (NIB) to the end...
Tags: 1944 Water Treaty, Arizona, Botany, Colorado River, Colorado River delta, All tags...
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains a suite of 52 streamflow metrics. These metrics were computed using daily outputs of runoff from HRUs (PRMS variable hru_outflow) and streamflow from the model stream segments (PRMS variable seg_outflow) for all historical and future simulations (table1_GCMs_used.csv) with both static and dynamic land cover parameters. These streamflow statistics describe the duration, frequency, magnitude, rate of change, and...
thumbnail
This data release describes micrometeorological and soil-moisture data collected from January 1, 2017 through May 31, 2019 at the Amargosa Desert Research Site adjacent to a low-level radio­active waste and hazardous chemical waste facility near Beatty, Nevada. Micrometeorological data include precipitation, solar radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, and soil-water content. Soil-moisture data include periodic measurements of volumetric water-content at four experimental sites that represent vegetated native soil, devegetated native soil, and two simulated waste disposal trenches—maximum measurement depths range from 5.25...


map background search result map search result map Mean Annual Precipitation within the Wyoming Basins Ecoregional Assessment area Climatic suitability models and assessments for plant species and communities of the Southwestern US Micrometeorological and Soil-Moisture Data at the Amargosa Desert Research Site in Nye County near Beatty, Nevada, January 1, 2017 to May 31, 2019 Estimates of atmospheric inorganic nitrogen deposition to the Chesapeake Bay watershed, 1950-2050 Nutrient and sediment concentrations, loads, yields, and rainfall characteristics at USGS surface and subsurface-tile edge-of-field agricultural monitoring sites in Great Lakes States (ver. 2.1, September 2023) South Bay Monthly BCMv8 Mad River Monthly BCMv8 South Delta Monthly BCMv8 Bias-corrected daily precipitation at 1-kilometer resolution for Puerto Rico from dynamical downscaling by the Weather Research and Forecasting (WRF) model of the Centre National de Recherches Meteorologiques-CERFACS (CNRM) model for the historical period 1985-2005 Streamflow Statistics for Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 Historical simulated snowpack and other hydrometeorology data at 90 m for the Crown of the Continent and vicinity, United States and Canada, water years 1981-2020 Remotely-sensed observations of the unrestored riparian corridor of the Colorado River Delta in Mexico, 2019-2022 Spreadsheet of best models for each downscaled climate dataset and for all downscaled climate datasets considered together (Best_model_lists.xlsx) Spreadsheet of change factors at 170 NOAA Atlas 14 stations in Florida derived from the Analog Resampling and Statistical Scaling Method by Jupiter Intelligence using the Weather Research and Forecasting Model (JupiterWRF) downscaled climate dataset (CF_JupiterWRF_2040_to_historical.xlsx) Spreadsheet of change factors at 170 NOAA Atlas 14 stations in Florida derived from the Analog Resampling and Statistical Scaling Method by Jupiter Intelligence using the Weather Research and Forecasting Model (JupiterWRF) downscaled climate dataset (CF_JupiterWRF_2070_to_historical.xlsx) Spreadsheet of quantiles of change factors at 242 NOAA Atlas 14 stations in Florida derived from downscaled climate datasets considering all models, and the RCP4.5 and SSP2-4.5 future emission scenarios (CFquantiles_2040_to_historical_all_models_RCP4.5.xlsx) Spreadsheet of quantiles of change factors at 242 NOAA Atlas 14 stations in Florida derived from downscaled climate datasets considering only the best models, and the RCP4.5 and SSP2-4.5 future emission scenarios (CFquantiles_2070_to_historical_best_models_RCP4.5.xlsx) Documentation of R scripts to create boxplots of change factors by NOAA Atlas 14 station, or for all stations in a Florida basin or county (Documentation_R_script_create_boxplot.docx) Russian River Integrated Hydrologic Model (RRIHM): Agricultural Direct Diversion Micrometeorological and Soil-Moisture Data at the Amargosa Desert Research Site in Nye County near Beatty, Nevada, January 1, 2017 to May 31, 2019 South Delta Monthly BCMv8 South Bay Monthly BCMv8 Remotely-sensed observations of the unrestored riparian corridor of the Colorado River Delta in Mexico, 2019-2022 Russian River Integrated Hydrologic Model (RRIHM): Agricultural Direct Diversion Mad River Monthly BCMv8 Bias-corrected daily precipitation at 1-kilometer resolution for Puerto Rico from dynamical downscaling by the Weather Research and Forecasting (WRF) model of the Centre National de Recherches Meteorologiques-CERFACS (CNRM) model for the historical period 1985-2005 Historical simulated snowpack and other hydrometeorology data at 90 m for the Crown of the Continent and vicinity, United States and Canada, water years 1981-2020 Estimates of atmospheric inorganic nitrogen deposition to the Chesapeake Bay watershed, 1950-2050 Spreadsheet of best models for each downscaled climate dataset and for all downscaled climate datasets considered together (Best_model_lists.xlsx) Spreadsheet of change factors at 170 NOAA Atlas 14 stations in Florida derived from the Analog Resampling and Statistical Scaling Method by Jupiter Intelligence using the Weather Research and Forecasting Model (JupiterWRF) downscaled climate dataset (CF_JupiterWRF_2040_to_historical.xlsx) Spreadsheet of change factors at 170 NOAA Atlas 14 stations in Florida derived from the Analog Resampling and Statistical Scaling Method by Jupiter Intelligence using the Weather Research and Forecasting Model (JupiterWRF) downscaled climate dataset (CF_JupiterWRF_2070_to_historical.xlsx) Spreadsheet of quantiles of change factors at 242 NOAA Atlas 14 stations in Florida derived from downscaled climate datasets considering all models, and the RCP4.5 and SSP2-4.5 future emission scenarios (CFquantiles_2040_to_historical_all_models_RCP4.5.xlsx) Spreadsheet of quantiles of change factors at 242 NOAA Atlas 14 stations in Florida derived from downscaled climate datasets considering only the best models, and the RCP4.5 and SSP2-4.5 future emission scenarios (CFquantiles_2070_to_historical_best_models_RCP4.5.xlsx) Documentation of R scripts to create boxplots of change factors by NOAA Atlas 14 station, or for all stations in a Florida basin or county (Documentation_R_script_create_boxplot.docx) Nutrient and sediment concentrations, loads, yields, and rainfall characteristics at USGS surface and subsurface-tile edge-of-field agricultural monitoring sites in Great Lakes States (ver. 2.1, September 2023) Climatic suitability models and assessments for plant species and communities of the Southwestern US Mean Annual Precipitation within the Wyoming Basins Ecoregional Assessment area Streamflow Statistics for Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100