Skip to main content
Advanced Search

Filters: Tags: resilience (X)

303 results (36ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Measurements of liquid water content (LWC) of coastal fog events were collected using specialized fog water collection units during the hot dry summer season (July to September) and continued through the winter. These data were assembled to explore the potential of fog water collection as a water resource for Midpeninsula Regional Open Space District public lands in San Mateo County, California. Simultaneous meteorological measurements were collected for four variables: wind, temperature, humidity, and solar radiation. The dataset includes ~12,000 records for two summers (2016 and 2017) at two sites. One site was a grassland near the MROSD Skyline Field Office (SFO) and the other in a Douglas forest clearing at...
thumbnail
In 'Predicted (1989-2015) and forecasted (2015-2114) rate of change and recovery of sagebrush (Artemisia spp.) following energy development in southwestern Wyoming, USA (ver. 2.0, January 2021)', we provide spatially- and temporally-explicit maps of predictions for the rate of change and time to recovery and percent recovery of sagebrush cover after 100 years (Monroe et al. 2020). The rasters beginning with "sage.rate" depict the predicted annual rate of change in sagebrush cover for each timestamp interval, across the Wyoming Landscape Conservation Initiative area (WLCI) in southwestern Wyoming, USA (1989-2015). The files 'time_to_recov_v2.0.tif' and 'perc_recov_v2.0.tif' are rasters for predicted time to recovery...
thumbnail
The Southwest U.S. is experiencing hotter droughts, which are contributing to more frequent, severe wildfires. These droughts also stress vegetation, which can make it more difficult for forests to recover after fire. Forest regeneration in burned areas may be limited because seeds have to travel long distances to recolonize, and when they do arrive, conditions are often unfavorably hot and dry. Conifer forests in the region have demonstrated particular difficulty in recovering after fires, and in some cases have transformed into other ecosystem types, such as deciduous-dominated forests or grasslands. Such ecological transformations have implications not only for the plants and animals that depend on conifer forests...
thumbnail
Groundwater influenced ecosystems (GIEs) are increasingly vulnerable due to groundwater extraction, land use practices, and climate change. These ecosystems receive groundwater inflow, which can maintain water levels, water temperature, and chemistry necessary to sustain the biodiversity that they support. Many aquatic systems receive groundwater as a portion of their baseflow or water budget, and in some systems (e.g., springs, seeps, fens) this connection with groundwater is central to the system’s integrity and persistence. Groundwater management decisions for human use often do not consider the ecological effects of those actions on GIEs. This disparity can be attributed, in part, to a lack of information regarding...


map background search result map search result map Precipitation (Mean: Annual) - 2070-2100 - RCP4.5 - Min Precipitation (Proportion July - Sep) - 2020-2050 - RCP4.5 - Mean Temperature (Mean: Annual) - 2070-2100 - RCP4.5 - Max Temperature (Mean: Annual) - 2020-2050 - RCP4.5 - Min Precipitation (Proportion May - Oct) - 2070-2100 - RCP4.5 - Max Precipitation (Mean: Apr - June) - 2020-2050 - RCP8.5 - Mean Precipitation (Mean: Apr - June) - 2020-2050 - RCP8.5 - Min Precipitation (Mean: Dec - Mar) - 2070-2100 - RCP4.5 - Mean Precipitation (Mean: Dec - Mar) - 2020-2050 - RCP8.5 - Max Precipitation (Mean: July - Sep) - 2020-2050 - RCP4.5 - Min Temperature (Mean: Apr - June) - 2020-2050 - RCP8.5 - Max Temperature (Mean: Dec - Mar) - 2020-2050 - RCP4.5 - Mean Temperature (Mean: July - Sep) - 2020-2050 - RCP4.5 - Max Temperature (Mean: July - Sep) - 2020-2050 - RCP4.5 - Mean Temperature (Mean: July - Sep) - 2020-2050 - RCP4.5 - Min Temperature (Minimum: January) - 2070-2100 - RCP8.5 - Min Post-Fire Conifer Regeneration Under a Warming Climate: Will Severe Fire Be a Catalyst for Forest Loss? Predicted (1989-2015) and forecasted (2015-2114) estimates for rate of change and recovery of sagebrush (Artemisia spp.) following energy development in southwestern Wyoming, USA (ver. 2.0, January 2021) Liquid water content, coastal fog events, San Mateo County, California Vulnerability of Groundwater Influenced Ecosystems in the Northeastern United States Liquid water content, coastal fog events, San Mateo County, California Predicted (1989-2015) and forecasted (2015-2114) estimates for rate of change and recovery of sagebrush (Artemisia spp.) following energy development in southwestern Wyoming, USA (ver. 2.0, January 2021) Post-Fire Conifer Regeneration Under a Warming Climate: Will Severe Fire Be a Catalyst for Forest Loss? Vulnerability of Groundwater Influenced Ecosystems in the Northeastern United States Precipitation (Mean: Annual) - 2070-2100 - RCP4.5 - Min Precipitation (Proportion July - Sep) - 2020-2050 - RCP4.5 - Mean Temperature (Mean: Annual) - 2070-2100 - RCP4.5 - Max Temperature (Mean: Annual) - 2020-2050 - RCP4.5 - Min Precipitation (Proportion May - Oct) - 2070-2100 - RCP4.5 - Max Precipitation (Mean: Apr - June) - 2020-2050 - RCP8.5 - Mean Precipitation (Mean: Apr - June) - 2020-2050 - RCP8.5 - Min Precipitation (Mean: Dec - Mar) - 2070-2100 - RCP4.5 - Mean Precipitation (Mean: Dec - Mar) - 2020-2050 - RCP8.5 - Max Precipitation (Mean: July - Sep) - 2020-2050 - RCP4.5 - Min Temperature (Mean: Apr - June) - 2020-2050 - RCP8.5 - Max Temperature (Mean: Dec - Mar) - 2020-2050 - RCP4.5 - Mean Temperature (Mean: July - Sep) - 2020-2050 - RCP4.5 - Max Temperature (Mean: July - Sep) - 2020-2050 - RCP4.5 - Mean Temperature (Mean: July - Sep) - 2020-2050 - RCP4.5 - Min Temperature (Minimum: January) - 2070-2100 - RCP8.5 - Min