Skip to main content
Advanced Search

Filters: Tags: seismology (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

199 results (118ms)   

View Results as: JSON ATOM CSV
thumbnail
Compressional- (P-) wave seismic refraction data were acquired in December 2018 and July 2019 along fourteen profiles within the spillway of Success Dam in Porterville, California. A new concrete ogee weir is planned for construction within the existing spillway, and the P-wave seismic velocity models will be used to inform further geotechnical investigations, including siting new geologic borings, and the advanced engineering design phases in terms of rock rippability and relative rock hardness/competency. Data acquisition, processing, and modeling were conducted collaboratively between the U.S. Geological Survey (USGS) and U.S. Army Corps of Engineers (USACE) Sacramento District. Data were acquired with Geometrics...
thumbnail
This data release provides access to a low-altitude, aeromagnetic survey of a part of south-central Washington and north-central Oregon. The survey extends from the Blue Mountains westward to the Cascade Range and covers the Oregon cities of The Dalles, Hermiston, and Milton Freewater and the Washington cities of Richland, Pasco, Kennewick, and Walla Walla. Data were acquired during the summer of 2010 by Goldak Airborne Surveys working under contract to the U.S. Geological Survey. Total magnetic field values were acquired using a fixed-wing aircraft flown at a target elevation of 150 m above terrain (305 m over urban areas) and along flight lines and tie lines spaced 400 m and 4000 m apart, respectively. Flight...
thumbnail
Here we present an inventory of remotely and field-observed landslides triggered by 2019-2020 Puerto Rico earthquake sequence. The inventory was mapped using pre- and post-event satellite imagery (PR_landslide_inventory_imagery.csv), an extensive collection of field observations (https://doi.org/10.5066/P96QNFMB) and using pre-earthquake lidar as guidance for mapping polygons with more precise locations and geometries (2015 - 2017 USGS Lidar DEM: Puerto Rico dataset). The inventory consists of a shapefile of 309 polygons (PR_landslide_inventory_pts.shp) outlining the source area and deposits together. It also includes a point inventory (PR_landslide_inventory_pts.shp) marking 170 individual displaced boulders that...
thumbnail
In March 2015, the U.S. Geological Survey acquired seismic reflection and refraction data along an approximately 2.8-km-long profile across northwest-trending San Andreas Fault splays located at the Dos Palmas Preserve east of Salton Sea. To acquire the reflection and refraction data, we collocated shots and geophones, spaced every 3 m along the profile. We used 933 SercelTM L40A P-wave (40-Hz vertical-component) geophones with a sensitivity of 22.34 volts/meter/second to record 925 P-wave shots. We generated P-wave data using one of two active sources: 400-grain Betsy-SeisgunTM shots at approximately every 90 m and a 3.5-kg sledgehammer and steel plate combination at every 3 m between the seisgun shots. All data...
thumbnail
The 2018 KÄ«lauea eruption and caldera collapse generated intense cycles of seismicity tied to repeated large seismic (Mw ~5) collapse events associated with magma withdrawal from beneath the summit. To gain insight into the underlying dynamics and aid eruption response, we applied waveform-based earthquake detection and double-difference location as the eruption unfolded. Here, we augment these rapid results by grouping events based on patterns of correlation-derived phase polarities across the network. From April 29 to August 6, bracketing the eruption, we used ~2800 events cataloged by the Hawaiian Volcano Observatory to detect and precisely locate 44,000+ earthquakes. Resulting hypocentroids resolve complex,...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail. ##### This distribution includes models of three-dimensional slab geometry under...
thumbnail
I use template matching and precise relative relocation techniques to develop a high-resolution earthquake catalog for the initial portion of the 2019 Ridgecrest earthquake sequence, from July 4-16, encompassing the foreshock sequence and the first 10+ days of aftershocks following the Mw 7.1 mainshock. Using 13,525 routinely cataloged events as waveform templates, I detect and precisely locate a total of 34,091 events. Precisely located earthquakes reveal numerous cross-cutting fault structures with dominantly perpendicular SW- and NW-strikes. Foreshocks of the Mw 6.4 event appear to align on a NW-striking fault. Aftershocks of the Mw 6.4 event suggest that it further ruptured this NW-striking fault, as well as...
thumbnail
In October 2016, we acquired an approximately 15-km-long seismic profile along a linear transect across the East Bay region of the San Francisco Bay area. Our goal was to image previously unknown strands of the Hayward Fault zone and to better delineate the structure and geometry of the main trace of the Hayward Fault. Our profile started near the southern border of San Leandro, California at the San Francisco Bay shoreline, trended ENE through the northern edge of Castro Valley, California, and ended approximately 5 km WSW of San Ramon, California. The data were analyzed using refraction tomography modeling, reflection processing, and guided-wave analysis. The analyzed data are presented in separate reports by...
This dataset consists of an inventory of the locations of liquefaction-related phenomena triggered by the 7 January 2020 M6.4 Puerto Rico earthquake. The inventory is primarily based on field observations collected during post-earthquake reconnaissance conducted by the USGS and partners (Allstadt and others, 2020, Interactive Dashboard). Some additional locations were added based on reconnaissance reports by other groups (Miranda and others, 2020; Morales-Velez and others, 2020). We delineated 43 polygons of liquefaction areas and lateral spreading where we had sufficient evidence to do so (liquefaction_polygons_20210913.zip), but all outlines are approximate because liquefaction is primarily a subsurface process...
thumbnail
These data are a series of telecommunications voice and data restoration percentages for 17 counties affected by the HayWired earthquake scenario, a magnitude 7.0 earthquake occurring on the Hayward Fault on April 18, 2018, with an epicenter in the city of Oakland, CA. These data for telecommunications demand served are derived from residual network capacity based on potential hazard information (for example, ground shaking and liquefaction), assumptions about dependence on electric power restoration, and assumptions about network congestion caused by demand surge. Various resilience cases pertain to assumptions about the presence of backup power (for example, batteries or generators), ability to truck in fuel and...
thumbnail
This dataset accompanies planned publication 'Determining fault geometry through the transport-parallel distribution of thermochronometer cooling ages'. The Ar/Ar data is for samples that record the thermal history of the area. The geochronology provides time constraints for the thermal histories studied in the manuscript. Samples were collected from Nepal, overseen by Nadine McQuarrie (University of Pittsburgh), who sent them to the USGS Denver Argon Geochronology Laboratory for Ar/Ar analysis.
thumbnail
Near-surface site characteristics are critical for accurately modeling ground motion, which in turn influences seismic hazard analysis and design of critical infrastructure. Currently, there are many strong motion accelerometers within the Advanced National Seismic System (ANSS) that are missing this information. We use a Geographic Information Systems (GIS) based framework to intersect the site coordinates of approximately 5,500 ANSS accelerometers located throughout the United States and its territories with geology and velocity information. We consider: (1) surficial geology from digitized geologic maps (Horton, 2017; Wilson et al., 2015; Sherrod et al., 2007; Bawiec, 1999; Saucedo, 2005; Bedrossian et al., 2012;...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: ANSS, Alabama, American Samoa, Arizona, Arkansas, All tags...
thumbnail
This data release provides access to a low-altitude aeromagnetic survey flown over a part of the Cascade Range of the US Pacific Northwest, approximately centered over the town of Cascade Locks, Oregon. The Cascade Locks magnetic survey encompasses two large stratovolcanoes of the Cascade Range: Mt. Hood (3426 m) in Oregon and Mt. Adams (3742 m) in Washington. Data were acquired between October 17, 2021, and February 26, 2022, by KBM Resources Group, Thunder Bay, Ontario, Canada, working under contract to the U.S. Geological Survey. The survey is underlain by a diverse magnetic terrane, including Miocene flood basalts of the Columbia River Basalt Group and Tertiary to Quaternary volcanic and intrusive rocks of the...
thumbnail
This digital elevation model provides a tool for calibrating tsunami risk to observations of the 1945 Makran tsunami in Karachi Harbour. The DEM bathymetry is derived from soundings made mainly during the first eight years after the tsunami. Although deficient in portraying intertidal backwaters and upland topography, the DEM accurately depicts the sheltered setting of one of the two tide gauges that recorded the 1945 tsunami.
thumbnail
This dataset of the elevation of basement and thickness of sediment above the syn- and post-rift unconformity (sediments above being generally Late Cretaceous and younger) was constructed for application to site response models in earthquake hazard analyses. Sediment thickness in meters is provided in zipped csv format on a 0.01-degree grid, and sediment thickness and basement elevation in meters relative to mean sea level are provided in GeoTIFF format on a 1-km grid.
thumbnail
This data release contains three spreadsheets that have aluminum-26 and beryllium-10 concentrations for samples collected in and near Sparta, North Carolina in 2021-2022. These samples were prepared for burial dating by the Reston Cosmogenic Nuclide (RECON) Lab and measured via accelerator mass spectrometry at the Purdue Rare Isotope Measurement (PRIME) Lab. The file “Sparta_SiteLocations_Odom.csv” contains site locations and interpreted ages; measurements of aluminum-26 and beryllium-10 and related data are located in respective .csv files.
thumbnail
Note: This data release has been superseded, available here: https://doi.org/10.5066/P9MYL7WJ This data release contains processed high-resolution multichannel sparker seismic-reflection (MCS) data that were collected aboard Humboldt State University’s R/V Coral Sea in October of 2018 on U.S. Geological Survey cruise 2018-658-FA on the shelf and slope between Cape Blanco, Oregon, and Cape Mendocino, California. MCS data were collected to characterize quaternary deformation and sediment dynamics along the southern Cascadia margin.
thumbnail
Multichannel minisparker and boomer seismic-reflection and chirp sub bottom data were collected by the U.S. Geological Survey in September of 2013 in Port Valdez, Alaska. Data were collected aboard the USGS R/V Alaskan Gyre during field activity G-01-13-GA. Sub-bottom acoustic penetration spans several hundreds of meters and is variable by location. High-resolution multichannel seismic-reflection data were acquired to support the U.S. Geological Survey Alaska coastal and marine hazards project to explore the sedimentary structure of tsunamigenic landslide deposits around an IODP drill site in Port Valdez. These data and information are intended for science researchers, students from elementary through college, policy...
thumbnail
High-resolution acoustic backscatter data, bathymetry data, single channel minisparker seismic-reflection data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game in May of 2014 southwest of Chenega Island and southwest of Montague Island, Alaska. Data were collected aboard the Alaska Department of Fish and Game vessel, R/V Solstice, during USGS field activity 2014-622-FA, using a pole mounted 100-kHz Reson 7111 multibeam echosounder, a 500 Joule SIG 2-mille minisparker sound source and a single channel streamer.


map background search result map search result map LiDAR and paleoseismology solve 140-yr old earthquake mystery in the Pacific Northwest USA - source tabular data and images for 1872 Chelan earthquake fault scarp study 2015 high resolution seismic acquisition at Dos Palmas Preserve, Mecca, California Bathymetric and topographic grid intended for simulations of the 1945 Makran tsunami in Karachi Harbour Velocity models and first break picks, Success Dam spillway seismic refraction survey, Porterville, California Voice and data telecommunications restoration curves for 17 counties affected by the April 18, 2018, M7.0 HayWired earthquake scenario mainshock High resolution earthquake catalogs from the 2018 Kilauea eruption sequence Multichannel sparker seismic reflection data of USGS field activity 2018-658-FA collected between Cape Blanco and Cape Mendocino from 2018-10-04 to 2018-10-18 High-Resolution Aeromagnetic Survey of the Pasco Area, Washington and Oregon Chirp, multichannel minisparker, and boomer seismic-reflection data from USGS field activity G-01-13-GA collected in Port Valdez, Alaska, in September 2013 Argon data for Nepal Inventory of landslides triggered by the 2020 Puerto Rico earthquake sequence Data Release for the 2016 East Bay Seismic Imaging Investigation of the Hayward Fault Zone Compilation of Geologic and Seismic Velocity Characteristics at Advanced National Seismic System Strong Motion Accelerometer Sites Atlantic and Gulf Coastal Plains Sediment Thickness (v220517) High-Resolution Aeromagnetic Survey Over Cascade Locks, Oregon, and Surrounding Areas Cosmogenic Al-26/Be-10 Isochron Burial Data for the Sparta, NC Area Velocity models and first break picks, Success Dam spillway seismic refraction survey, Porterville, California 2015 high resolution seismic acquisition at Dos Palmas Preserve, Mecca, California High resolution earthquake catalogs from the 2018 Kilauea eruption sequence Bathymetric and topographic grid intended for simulations of the 1945 Makran tsunami in Karachi Harbour Data Release for the 2016 East Bay Seismic Imaging Investigation of the Hayward Fault Zone LiDAR and paleoseismology solve 140-yr old earthquake mystery in the Pacific Northwest USA - source tabular data and images for 1872 Chelan earthquake fault scarp study Cosmogenic Al-26/Be-10 Isochron Burial Data for the Sparta, NC Area Inventory of landslides triggered by the 2020 Puerto Rico earthquake sequence Argon data for Nepal High-Resolution Aeromagnetic Survey Over Cascade Locks, Oregon, and Surrounding Areas High-Resolution Aeromagnetic Survey of the Pasco Area, Washington and Oregon Multichannel sparker seismic reflection data of USGS field activity 2018-658-FA collected between Cape Blanco and Cape Mendocino from 2018-10-04 to 2018-10-18 Voice and data telecommunications restoration curves for 17 counties affected by the April 18, 2018, M7.0 HayWired earthquake scenario mainshock Atlantic and Gulf Coastal Plains Sediment Thickness (v220517) Compilation of Geologic and Seismic Velocity Characteristics at Advanced National Seismic System Strong Motion Accelerometer Sites