Skip to main content
Advanced Search

Filters: Tags: species distribution model (X)

272 results (123ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Here we present the map of probable suitable habitat for Pale-yellow layia (Layia heterotricha). The data indicate both how many models predicted each location to be suitable for the species, and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. This product can be used to inform future conservation, planning, and management actions in the California desert. Complete methods and other additional...
Here we present the map of potential suitable habitat for Parish’s daisy (Erigeron parishii). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit future habitat modelling...
Here we present the map of potential suitable habitat for Mountain springs bush lupine (Lupinus excubitus var. medius). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to...
Here we present the map of potential suitable habitat for Coachella Valley milk-vetch (Astragalus lentiginosus var. coachellae). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/ddi.12257/abstract): Aim Ecological niche modelling is one of the main tools that allows for the incorporation of climate change effects into conservation planning. For example, ecological niche model predictions can be used to rank species by degree of predicted future habitat loss. While many studies have considered how different modelling decisions contribute to uncertainty in niche model outputs, here we evaluate how metrics used to rank species by conservation risk respond to the choice of global climate models, greenhouse gas emission scenarios, suitable versus unsuitable threshold values, and the degree of model complexity. Location California,...
thumbnail
The Virginia Department of Conservation and Recreation – Natural Heritage Program (DCRDNH) and the Florida Natural Areas Inventory (FNAI) at Florida State University (collectively, Project Partners) were funded by the South Atlantic Landscape Conservation Cooperative (SALCC) in April 2015 to develop ten species distribution models (SDM) of priority at-risk and range-restricted species (Ambystoma cingulatum, Echinacea laevigata, Heterodon simus, Lindera melissifolia, Lythrum curtissii, Notophthalmus perstriatus, Phemeranthus piedmontanus, Rhus michauxii, and Schwalbea americana) for the purposes of incorporating the models and supporting information on the conservation and management needs of the species into the...
Here we present the map of potential suitable habitat for Harwood's eriastrum (Eriastrum harwoodii). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit future habitat...
Here we present the map of potential suitable habitat for Pahrump orache (Atriplex argentea var. longitrichoma). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit...
Here we present the map of probable suitable habitat for Charlotte's phacelia (Phacelia nashiana). The data indicate both how many models predicted each location to be suitable for the species, and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. This product can be used to inform future conservation, planning, and management actions in the California desert. Complete methods and other additional...
Here we present the map of probable suitable habitat for Nye milk-vetch (Astragalus nyensis). The data indicate both how many models predicted each location to be suitable for the species, and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. This product can be used to inform future conservation, planning, and management actions in the California desert. Complete methods and other additional information...
Here we present the map of probable suitable habitat for Cushenberry oxytheca (Acanthoscyphus parishii var. goodmaniana). The data indicate both how many models predicted each location to be suitable for the species, and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. This product can be used to inform future conservation, planning, and management actions in the California desert. Complete methods...
Here we present the map of probable suitable habitat for Mojave tarplant (Deinandra mohavensis). The data indicate both how many models predicted each location to be suitable for the species, and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. This product can be used to inform future conservation, planning, and management actions in the California desert. Complete methods and other additional...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
Future (2076-2095) predicted probability of fisher year-round occurrence projected under the A1fi emissions scenario with the Hadley CM3 GCM model (Gordon et al. 2000, Pope et al. 2000). Projected fisher distribution was created with Maxent (Phillips et al. 2006) using fisher detections (N = 102, spanning 1993 – 2011) and seven predictor variables: mean winter (January – March) precipitation, mean summer (July – September) precipitation, mean summer temperature amplitude, mean daily low temperature for the month of the year with the warmest mean daily low temperature, mean fraction of vegetation carbon burned, mean vegetation carbon (g C m2), and modal vegetation class. Predictor variables had a grid cell size of...


map background search result map search result map Predicted probability of fisher year-round occurrence, 2076-2095, Hadley CM3 A1fi, 10 km resolution Hot, dry scenario forecast of climate suitability forCalifornia black oak  (Quercus kelloggii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2 projections Hot, wet scenario forecast of climate suitability for California white oak (Quercus lobata) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, dry scenario forecast of climate suitability for quaking aspen (Populus tremuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, dry scenario forecast of climate suitability for eastern Mojave buckwheat (Eriogonum fasciculatum) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, dry scenario forecast of climate suitability for rubber rabbitbrush (Chrysothamnus nauseosus) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections At-risk and range restricted species models: Geographic Datasets for Lindera melissifolia (Pondberry) Species Distribution Model (SDM) for Astragalus didymocarpus in the Mojave Desert Species Distribution Model (SDM) for Descurainia pinnata in the Mojave Desert Hot, dry scenario forecast of climate suitability forCalifornia black oak  (Quercus kelloggii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2 projections Hot, wet scenario forecast of climate suitability for California white oak (Quercus lobata) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, dry scenario forecast of climate suitability for quaking aspen (Populus tremuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, dry scenario forecast of climate suitability for eastern Mojave buckwheat (Eriogonum fasciculatum) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, dry scenario forecast of climate suitability for rubber rabbitbrush (Chrysothamnus nauseosus) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Species Distribution Model (SDM) for Astragalus didymocarpus in the Mojave Desert Species Distribution Model (SDM) for Descurainia pinnata in the Mojave Desert At-risk and range restricted species models: Geographic Datasets for Lindera melissifolia (Pondberry) Predicted probability of fisher year-round occurrence, 2076-2095, Hadley CM3 A1fi, 10 km resolution