Skip to main content
Advanced Search

Filters: Tags: stream flow (X) > Date Range: {"choice":"year"} (X)

12 results (86ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This Project Snapshot provides a brief overview of the project "Development of Statistical Methods to Estimate Baseline and Future Low Flow Characteristics of Ungaged Streams in Hawai`i".
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
The U.S. Geological Survey, in cooperation with the Southwest Florida Water Management District, calibrated a model to quantify the inflows and outflows in the Floral City, Inverness, and Hernando pools of the Tsala Apopka Lake basin in Citrus County, Florida. The calibrated model, which uses MODFLOW-NWT version 1.1.2, simulates hydrologic changes in pool stages, groundwater levels, spring flows, and streamflows caused by the diversion of streamflow from the Withlacoochee River to the Tsala Apopka Lake basin through water-control structures. A surface-water/groundwater flow model was developed using hydraulic parameters for lakes, streams, the unsaturated zone, and the underlying surficial and Upper Floridan aquifers...
thumbnail
Delivering adequate water supplies to support expanding human enterprise while maintaining the necessary flow regimes to support desired riparian ecosystems and formally protected wildlife species that depend upon them is increasingly difficult in the arid western United States. Many riparian systems have undergone dramatic alteration over the last 50 - 100 years, exacerbating the conflicts between resource use and biodiversity protection. One of the most visible changes that is in part due to altered flow regimes is the establishment of invasive plant species in riparian ecosystems. The highest priority invasive riparian plant is the Eurasian tree/shrub, tamarisk (or saltcedar, Tamarix spp.) the third most abundant...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
The stream systems of Hawai‘i are unique and home to many rare species, including five native fish and five native shellfish. These native species have amphidromous life cycles, meaning that they spend part of their lives in the ocean and part in freshwater streams. Stream flow serves as a vital natural pathway, connecting saltwater and freshwater habitats so that these animals can migrate between them and carry out critical life stages (e.g., development, reproduction). Over the last 20 years, the amount of rainfall in Hawai‘i has decreased, and climate models predict that this trend will continue. It is uncertain how reduced rainfall will affect stream flow and, consequently, the native stream species that depend...
thumbnail
Coastal rivers draining into the Gulf of Maine are home to the endangered Gulf of Maine Distinct Population Segment of Atlantic salmon. The Gulf of Maine population began to decline significantly by the late 19th century, leading to the closure of the commercial Atlantic salmon fishery in 1948. In recent years, populations have again begun to decrease again. State and federal fisheries biologists are concerned that climate-related changes in streamflow and temperature could impact salmon survival in these rivers. Projections of future climate conditions for the Northeast indicate warming air temperatures, earlier snowmelt runoff, and decreases in streamflow during the low flow period (summer). In the spring, snow...
Estimates of flows in the stream are critical to inform natural resource managers of the water availability for both human and ecological needs. Monitoring flow in the stream using a streamgage provides information about the amount and timing of surface water resources. However, not every stream has a streamgage and decisions about water resources may need to be made in a watershed where there is no flow information. Hydrologic models can be used to provide estimates of streamflow in the absence of streamflow information. These models depend upon available streamflow data for calibration, and can be very inaccurate without the use of those data. This research developed a method to group watersheds that are gaged...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/gcb.12850/abstract): Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout ( Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether...
thumbnail
Executive summary: Tamarisk control and removal has become a priority of riparian ecosystem management, due in part to its potential negative impacts on stream flow and groundwater recharge. Among the most controversial, and potentially most effective tamarisk control approaches is the introduction of the tamarisk leaf beetle, Diorhabda carinulata. The beetle has spread throughout virtually the entire upper Colorado River Basin, established major populations at Lake Mead in 2012, and is now poised to expand into the lower Colorado River Basin concordant with documented evolutionary change in beetle developmental response that may enable survival in southern regions. Superimposed on this direct plant/herbivore relationship...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
As the predicted impacts of climate change are becoming more apparent, natural resource managers are faced with the task of developing climate adaptation plans. These managers need state-of-the-art, scientifically based information upon which to base these management plans and decisions consistently across California and the Great Basin. This project applies historical, current, and projected climate data to a regional water model to examine water availability, biodiversity, and conservation. Analysis of this climate and hydrology data is expected to help managers understand areas in the region and landscape where the effects of climate change are expected to be the most profound. The study also addresses how the...
thumbnail
R6 SA (Science Applications), in cooperation with project collaborators and watershed stakeholders (watershed coordinators, Montana State University, MTDRC, EPA, conservation districts, TU) created the River Conditions Tool (RCT) to drive conservation actions via real-time stream gage data with predetermined aquatic, riverine, drought management science.This broad scale tool downscales to individual stream segments providing the ability of watershed groups to customize predetermined conservation triggers for immediate conservation action through real-time situational awareness at fine scales for all water users and in effect becomes a catalog of conservation activities for the entire broad scale project area.
thumbnail
Northern Arizona University will study how forest treatment practices and climate change may impact water balance across the Kaibab Plateau and critical habitats in lower elevations of the Grand Canyon. The project will include use of a forest landscape simulation model to examine how fuel treatments and prescribed burning will affect the resilience of forest ecosystems. The project will also address whether those activities would benefit the conservation of downstream riparian habitat by mitigating anticipated changes in the stream flow and water quality.The model will assist managers in developing, adaptation strategies for the conservation of riparian habitats by testing a range of realistic fuel treatment and...


    map background search result map search result map Impact of Changes in Streamflow and Temperature on Endangered Atlantic Salmon Using Climate and Water Models to Examine Future Water Availability and Biodiversity in California and the Great Basin Evaluating the Use of Models for Projecting Future Water Flow in the Southeast From Genotype to River Basin: The combined impacts of climate change on bio-control on a dominant riparian invasive tree/shrub (Tamarisk spp.) Linking Forest Landscape Management and Climate Change to the Conservation of Riparian Habitat in the Grand Canyon Assessing the Impact of Future Climate on Hawai‘i’s Aquatic Ecosystems Final Report and Publication: From Genotype to River Basin: The combined impacts of climate change on bio-control on a dominant riparian invasive tree/shrub MODFLOW-NWT data sets for simulation of Effects of Surface-Water and Groundwater Inflows and Outflows on the Hydrology of the Tsala Apopka Lake Basin in Citrus County, Florida River Conditions Tool (RCT) Linking Forest Landscape Management and Climate Change to the Conservation of Riparian Habitat in the Grand Canyon MODFLOW-NWT data sets for simulation of Effects of Surface-Water and Groundwater Inflows and Outflows on the Hydrology of the Tsala Apopka Lake Basin in Citrus County, Florida Assessing the Impact of Future Climate on Hawai‘i’s Aquatic Ecosystems From Genotype to River Basin: The combined impacts of climate change on bio-control on a dominant riparian invasive tree/shrub (Tamarisk spp.) Final Report and Publication: From Genotype to River Basin: The combined impacts of climate change on bio-control on a dominant riparian invasive tree/shrub Impact of Changes in Streamflow and Temperature on Endangered Atlantic Salmon Using Climate and Water Models to Examine Future Water Availability and Biodiversity in California and the Great Basin River Conditions Tool (RCT) Evaluating the Use of Models for Projecting Future Water Flow in the Southeast