Skip to main content
Advanced Search

Filters: Tags: stream flow (X) > Categories: Publication (X)

8 results (89ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Synopsis: This study analyzed the effects of vegetation change on hydrological fluctuations in the Columbia River basin over the last century using two land cover scenarios. The first scenario was a reconstruction of historical land cover vegetation, c. 1900. The second scenario was more recent land cover as estimated from remote sensing data for 1990. The results show that, hydrologically, the most important vegetation-related change has been a general tendency towards decreased vegetation maturity in the forested areas of the basin. This general trend represents a balance between the effects of logging and fire suppression. In those areas where forest maturity has been reduced as a result of logging, wintertime...
Concern over the greenhouse effect has led to increased interest in the regional implications of changes in temperature and precipitation patterns for water resources. The impact of greenhouse gases on water availability and quality is likely to be significant, though still poorly understood. Both the development of scenarios involving temperature and precipitation variation and the use of hydrologic simulation models allows researchers to study the impact of these changes on runoff and water supply.
Anthropogenic climate change is rapidly altering aquatic ecosystems across the Rocky Mountain West and may detrimentally impact populations of sensitive species that are often the focus of conservation efforts. The objective of this report is to synthesize a growing literature on these topics to address the following questions: (1) What is changing in climate and related physical/hydrological processes that may influence aquatic species and their habitats? (2) What are the implications for fish populations, aquatic communities, and related conservation values? (3) What can we do about it? In many instances, proactive efforts may help populations adapt to climate change; but elsewhere, transitions of aquatic ecosystems...
The benefits of gradually removing a dam (through multiple notches) are to reduce the total project cost and reduce possible environmental effects by allowing the impounded sediment to slowly move downstream, and a stable stream and revegetated floodplain to form upstream. Notching, in this study of a dam on Brewster Creek, near St. Charles, Illinois, involves cutting a given height (in five 12–18 inch notches over approximately a 9 month period) across the length (or some portion of the length) of the dam. Brewster Creek is a tributary of the Fox River in northeastern, Illinois. Sediment, dissolved oxygen, and geomorphic response are being monitored before, during, and after a gradual (notching) removal of the...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/gcb.12850/abstract): Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout ( Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether...
thumbnail
Executive summary: Tamarisk control and removal has become a priority of riparian ecosystem management, due in part to its potential negative impacts on stream flow and groundwater recharge. Among the most controversial, and potentially most effective tamarisk control approaches is the introduction of the tamarisk leaf beetle, Diorhabda carinulata. The beetle has spread throughout virtually the entire upper Colorado River Basin, established major populations at Lake Mead in 2012, and is now poised to expand into the lower Colorado River Basin concordant with documented evolutionary change in beetle developmental response that may enable survival in southern regions. Superimposed on this direct plant/herbivore relationship...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
After a long period in which fuel loads were sparse, fire recently has occurred with high frequency in the ungrazed riparian zone of the Upper San Pedro River in southern Arizona’s Chihuahuan Desert. We studied four accidental fires that occurred during 1994–2003 (two in different years at the same site). Woody vegetation was contrasted between three burned sites and matched spatial controls, and before and after the most recent fire. Herbaceous vegetation was sampled in multiple years producing a chronosequence of time since fire (from 4 months to 8 years). Riparian fire was associated with reductions in woody plant species diversity and canopy cover. In contrast, fire caused a short-term (2 year) pulse of...


    map background search result map search result map Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada). Final Report and Publication: From Genotype to River Basin: The combined impacts of climate change on bio-control on a dominant riparian invasive tree/shrub Final Report and Publication: From Genotype to River Basin: The combined impacts of climate change on bio-control on a dominant riparian invasive tree/shrub Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada).