Skip to main content
Advanced Search

Filters: Tags: streamflow (X) > partyWithName: U.S. Geological Survey (X) > Types: Map Service (X)

137 results (123ms)   

Filters
View Results as: JSON ATOM CSV
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for 11 selected streamgages in Jefferson County, Montana, that were based on methods described by Sando and McCarthy (2018).
thumbnail
Regional regression equations were calculated in Puerto Rico with generalized least squares techniques to estimate flood frequency statistics at ungaged locations using drainage area as the only explanatory variable. The island was divided into 2 regions to minimize residuals. The region division that resulted in lower and more balanced residuals runs primarily north-south near the center of the island, mostly along an 8-digit hydrologic unit code (HUC8) boundary. The division line runs through a HUC8 polygon on the southern end of the island, but care was taken to include entire watersheds and consideration was given where hydrologic and physiographic properties differed. This data release includes geographic information...
The U.S. Geological Survey (USGS), in cooperation with the Puerto Rico Environmental Quality Board, has compiled a series of geospatial datasets for Puerto Rico to be implemented into the USGS StreamStats application (https://streamstats.usgs.gov/ss/). These geospatial datasets, along with basin characteristics datasets for Puerto Rico published as a separate USGS data release (https://doi.org/10.5066/P9HK9SSQ), were used to delineate watersheds and develop the peak-flow and low-flow regression equations used by StreamStats. The geospatial dataset described herein are the sink watershed grid rasters at a 10-m resolution. A value is assigned to pixels in each sink watershed and the count of cells that drain to that...
thumbnail
This data release presents peak-flow frequency analyses by the U.S. Geological Survey based on methods described by Eash and others (2013) for streamgages 06600100, Floyd River at Alton, Iowa; 06600300, West Branch Floyd River near Struble, Iowa; 06600500, Floyd River near James, Iowa; 06605000, Ocheyedan River near Spencer, Iowa; 06605850, Little Sioux River at Linn Grove, Iowa; 06607200, Maple River at Mapleton, Iowa; and 06607500, Little Sioux River near Turin, Iowa. These methods are used to provide estimates of peak-flow quantiles for 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs). Annual peak-flow data used in the peak-flow frequency analyses for these streamgages were...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled Global Climate Models (GCMs) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The 20 future climate scenarios consist of ten GCMs with RCP 4.5 and 8.5 each: ACCESS 1.0, CanESM2, CCSM4, CESM1-BGC, CMCC-CMS, CNRM-CM5, GFDL-CM3, HadGEM2-CC, HadGEM2-ES, and MIROC5. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme...
thumbnail
This dataset contains base-flow recession time constant (tau) contours that are interpreted from tau values calculated at streamgages in the Niobrara National Scenic River study area. The contours were created by interpolating the calculated tau values using geostatistical kriging methods. Kriging is a geostatistical method that can be used to determine optimal weights for measurements at sampled locations (streamgages) for the estimation of values at unsampled locations (ungaged sites). The kriged tau map could be used (1) as the basis for identifying areas with different hydrologic responsiveness, and (2) in the development of regional low-flow regression equations. The Geostatistical Analyst tools in ArcGIS Pro...
thumbnail
The U.S. Geological Survey (USGS) developed a regression model for estimating mean August baseflow per square mile of drainage area in cooperation with National Oceanic and Atmospheric Administration (NOAA) to help resource managers assess relative amounts of baseflow in streams with Maine Atlantic Salmon habitat (Lombard and others, 2021). The model was applied to each reach of a stream network derived from select National Hydrography Dataset Plus High-Resolution (NHDPlusHR) data in the State of Maine south of 46º 21′55″ N latitude. The spatial coverage developed from the stream network contains model-estimated mean August baseflow per square mile of drainage area as an attribute of each NHDPlusHR reach. Please...
thumbnail
In cooperation with the South Carolina Department of Transportation (SCDOT), the U.S. Geological Survey prepared geospatial layers illustrating the boundaries of the regions used in the South Carolina (SC) Stream Hydrograph Methods presented in Bohman (1990,1992). The region limits were described in written text and depicted in figures in Bohman (1990, 1992), but have not been provided as geospatial layers (due to the age of the original publications). This project used best-available geospatial data from the U.S. Environmental Protection Agency (USEPA) ecoregions (2013) to create equivalent geospatial representations of the Bohman (1990, 1992) region boundaries for the SC Stream Hydrograph Methods. These layers...
thumbnail
This dataset contains the daily average base flow, as determined by hydrograph separation, for 14 watersheds in Gwinnett County, Georgia for October 2001 through September 2020. Hydrograph separations were done using the Web-based Hydrograph Analysis Tool (WHAT) using the simple local minimum method on the daily average streamflows, which are also provided in this dataset. Base flow along with the calculated base-flow index (the proportion of base flow to total flow) were used to characterize groundwater recharge and the relative degree of storm runoff in the watersheds. Base flow was also used as predictor variable in models for estimating streamwater constituent loads for 12 water-quality constituents at 13 of...
thumbnail
This data release contains monthly 270-meter gridded Basin Characterization Model (BCMv8) climate inputs and hydrologic outputs for Santa Clara River Valley South Bay (SCVSB). Gridded climate inputs include: precipitation (ppt), minimum temperature (tmn), maximum temperature (tmx), and potential evapotranspiration (pet). Gridded hydrologic variables include: actual evapotranspiration (aet), climatic water deficit (cwd), snowpack (pck), recharge (rch), runoff (run), and soil storage (str). The units for temperature variables are degrees Celsius, and all other variables are in millimeters. Monthly historical variables from water years 1896 to 2019 are summarized into water year files and long-term average summaries...
The U.S. Geological Survey's (USGS) SPAtially Referenced Regression On Watershed attributes (SPARROW) model was used to aid in the interpretation of monitoring data and simulate streamflow and water-quality conditions in streams across the Southwestern Region of the Unites States. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for Elk Creek at Augusta, Montana, that were based on methods described by Sando and McCarthy (2018). Sando, S.K., and McCarthy, P.M., 2018, Methods for peak-flow frequency analysis and reporting for streamgages in or near Montana based...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).
The U.S. Geological Survey (USGS), in cooperation with the Puerto Rico Environmental Quality Board, has compiled a series of geospatial datasets for Puerto Rico to be implemented into the USGS StreamStats application (https://streamstats.usgs.gov/ss/). These geospatial datasets, along with basin characteristics datasets for Puerto Rico published as a separate USGS data release (https://doi.org/10.5066/P9HK9SSQ), were used to delineate watersheds and develop the peak-flow and low-flow regression equations used by StreamStats. The geospatial dataset described herein are the sink point grid rasters at a 10-m resolution, which are raster representations of the sink points. The value of 1 is assigned to pixels that are...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, that were based on methods described by Sando and McCarthy (2018). Citation: Sando, S.K., and McCarthy, P.M.,...
thumbnail
In 2021, the U.S. Geological Survey (USGS), in cooperation with the National Geological and Geophysical Data Preservation Program, cataloged and scanned notes and calculations for indirect measurements taken during flood events in Montana. This product provides a publicly available catalog of the field notes, photos, survey information, and calculations for indirect measurements at selected sites. Indirect measurements are surveyed by the USGS after floods by identifying high water marks along rivers indicating the maximum stream stage. These high water marks are used to estimate the peak discharge through standardized methods. Estimates of peak streamflow from the indirect estimates were were added to the National...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).


map background search result map search result map Peak-flow frequency analyses for Elk Creek at Augusta, Montana, based on data through water year 2018 Results of peak-flow frequency analyses for 11 selected streamgages in Jefferson County, Montana, based on data through water year 2017 Sink point rasters for Puerto Rico StreamStats Sink watershed rasters for Puerto Rico StreamStats Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 SPARROW model inputs and simulated streamflow, nutrient and suspended-sediment loads in streams of the Southwestern United States, 2012 Base Year (ver. 2.0, October 2020) Regions for regional regression equations Base-flow recession time constant (tau) contours in the Niobrara National Scenic River in Nebraska, 2016-18 Peak-flow frequency analysis for seven selected U.S. Geological Survey streamgages in the Floyd and Little Sioux River Basins, Iowa, based on data through water year 2019 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, part 2 Santa Clara River Valley South Bay Monthly BCMv8 Peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 Future Climate and Hydrology from Twenty Localized Constructed Analog (LOCA) Scenarios and the Basin Characterization Model (BCMv8) Cataloging and Digitizing USGS Indirect Measurements for Montana through Water Year 2020 Spatial Coverage for Estimated Baseflow for Streams Containing Endangered Atlantic Salmon in Maine, USA (version 1.1, June 2022) Region Layers for USGS South Carolina Bohman Method Hydrograph in StreamStats WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 08: Daily average stream base flow at 14 watersheds in Gwinnett County, Georgia for water years 2002-2020 WATSTORE Peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, Montana, based on data through water year 2022 08: Daily average stream base flow at 14 watersheds in Gwinnett County, Georgia for water years 2002-2020 Results of peak-flow frequency analyses for 11 selected streamgages in Jefferson County, Montana, based on data through water year 2017 Base-flow recession time constant (tau) contours in the Niobrara National Scenic River in Nebraska, 2016-18 Regions for regional regression equations Santa Clara River Valley South Bay Monthly BCMv8 Sink point rasters for Puerto Rico StreamStats Sink watershed rasters for Puerto Rico StreamStats WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 WATSTORE Peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, Montana, based on data through water year 2022 Peak-flow frequency analysis for seven selected U.S. Geological Survey streamgages in the Floyd and Little Sioux River Basins, Iowa, based on data through water year 2019 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, part 2 Peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 Spatial Coverage for Estimated Baseflow for Streams Containing Endangered Atlantic Salmon in Maine, USA (version 1.1, June 2022) Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 Region Layers for USGS South Carolina Bohman Method Hydrograph in StreamStats Cataloging and Digitizing USGS Indirect Measurements for Montana through Water Year 2020 Future Climate and Hydrology from Twenty Localized Constructed Analog (LOCA) Scenarios and the Basin Characterization Model (BCMv8) SPARROW model inputs and simulated streamflow, nutrient and suspended-sediment loads in streams of the Southwestern United States, 2012 Base Year (ver. 2.0, October 2020)