Skip to main content
Advanced Search

Filters: Tags: streamflow modeling (X) > Date Range: {"choice":"year"} (X) > Categories: Data (X)

17 results (149ms)   

View Results as: JSON ATOM CSV
thumbnail
Our objective was to model specific mean daily flow (mean daily flow divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate.We used a random forest modeling approach to model the relation between specific mean daily flow on gaged streams (115 gages) and environmental variables. We then projected specific mean...
thumbnail
Our objective was to model specific minimum flow (mean of the annual minimum flows divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between specific minimum flow on gaged streams (115 gages) and environmental variables. We then projected...
thumbnail
This data release contains inputs for and outputs from hydrologic simulations for the conterminous United States (CONUS) using the Precipitation Runoff Modeling System (PRMS) version 5.1.0 and the USGS National Hydrologic Model Infrastructure (NHMI, Regan and others, 2018). Historical simulations using the Maurer forcings (Maurer and others, 2002) were conducted for the period 1950-2010. This metadata record documents the simulation output files for simulations ran using the dynamic parameters file. The output files are aggregated at the HUC4 level and are grouped and downloadable by HUC2 hydrologic region. Each zip folder contains identical information, just for a different region and set of hydrologic response...
thumbnail
Our objective was to model the risk of becoming intermittent under drier climate conditions on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a conditional inference modeling approach to model the relation between intermittency status on gaged streams (115 gages) and selected mean and minimum flow metrics. We then projected intermittency status and if a stream...
thumbnail
This data release contains inputs for and outputs from hydrologic simulations for the conterminous United States (CONUS) using the Precipitation Runoff Modeling System (PRMS) version 5.1.0 and the USGS National Hydrologic Model Infrastructure (NHMI, Regan and others, 2018). Historical simulations using the Maurer forcings (Maurer and others, 2002) were conducted for the period 1950-2010. This metadata record documents the simulation output files for simulations ran using the static parameters file. The output files are aggregated at the HUC4 level and are grouped and downloadable by HUC2 hydrologic region. Each zip folder contains identical information, just for a different region and set of hydrologic response...
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains a suite of 52 streamflow metrics. These metrics were computed using daily outputs of runoff from HRUs (PRMS variable hru_outflow) and streamflow from the model stream segments (PRMS variable seg_outflow) for all historical and future simulations (table1_GCMs_used.csv) with both static and dynamic land cover parameters. These streamflow statistics describe the duration, frequency, magnitude, rate of change, and...
thumbnail
The USGS and Newmont Mining Corp. surveyed 51 cross sections to determine hydraulic characteristics throughout 12 model reaches. The accuracy of the surveyed cross sections is believed to be +/- 0.5 ft. Field surveys included measuring the channel cross section up to the approximate altitude of the highest flood and includes auxiliary channels. Surveyed cross sections generally were at representative locations about every 3 miles along the Humboldt River channel. In areas where long overbank sections occurred, supplemental altitudes were determined from topographic maps in order to extend surveyed parts of cross sections so that each section represented the full width of the floodplain. In this dataset there is...
thumbnail
Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, latesummer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the...
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains the spatial model features (hydrologic response units [HRU_subset.zip] and stream segments [Segments_subset.zip]) on which model inputs and outputs are based. The assembly of model-ready files results in HRU and segment IDs that are different than those in the NHMI database. Two "crosswalk files" (nhm_hru_id_crosswalk.csv, nhm_segment_id_crosswalk.csv) are provided so that the model inputs and outputs can be mapped...
thumbnail
This data release contains input and output data from hydrologic simulations of streamflow conditions in the Red River Basin (RRB) using the Precipitation-Runoff Modeling System (PRMS). The RRB PRMS model predicts components of the water balance at 3065 hydrologic response units (HRU) and streamflow for 1614 stream segments within the model domain for the simulation period 1981 to 2016. The data release contains two shapefiles: (1) a map of HRUs in the model domain and (2) a map of stream segments in the model domain. In addition to the shapefiles, the data release includes files containing the calibrated parameters of the RRB PRMS model as well as model inputs and outputs. The model inputs are (1) climate data,...
thumbnail
This data release contains inputs for and outputs from hydrologic simulations for the conterminous United States (CONUS) using the Precipitation Runoff Modeling System (PRMS) version 5.1.0 (https://www.usgs.gov/software/precipitation-runoff-modeling-system-prms) and the USGS National Hydrologic Model Infrastructure (NHMI, Regan and others, 2018). These simulations were developed to provide estimates of the water budget and statistics of streamflow for historical and potential future conditions using atmospheric forcing data from Coupled Model Intercomparison Project phase 5 (CMIP5). Specific file types include: 1) input forcings of minimum air temperature, maximum air temperature, and daily precipitation derived...
thumbnail
Our objective was to model mean annual number of zero-flow days (days per year) for small streams in the Upper Colorado River Basin under historic hydrologic conditions on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between zero-flow days per year on gaged streams (115 gages) and environmental variables....
thumbnail
Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow...
thumbnail
Our objective was to model 7-day minimum flow (mean of the annual minimums of a 7-day moving average for each year [cubic feet per second]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between 7-day minimum flow on gaged streams (115 gages) and environmental variables. We then projected 7-day minimum...
thumbnail
Our objective was to model intermittency (perennial, weakly intermittent, or strongly intermittent) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate.We used a random forest modeling approach to model the relation between intermittency on gaged streams (115 gages) and environmental variables. We then projected intermittency status to ungaged reaches in the Upper Colorado...
thumbnail
Our objective was to model minimum flow coefficient of variation (CV) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between minimum flow CV (the standard deviation of annual minimum flows times 100 divided by the mean of annual minimum flows) on gaged streams (115 gages) and environmental variables....
thumbnail
Our objective was to model frequency of low-pulse events on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between frequency of low-pulse events on gaged streams (115 gages) and environmental variables. We then projected frequency of low-pulse events to ungaged reaches in the Upper Colorado River Basin...


    map background search result map search result map Predicted intermittency Predicted frequency of low-flow pulse events Predicted minimum flow coefficient of variation Predicted 7-day minimum flow Predicted specific mean daily flow Predicted specific minimum flow Predicted hydrology (intermittency) under drier climate conditions Predicted mean annual number of zero-flow days Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change Modeled Streamflow Metrics on Small, Ungaged Stream Reaches in the Upper Colorado River Basin River Channel Cross-Sections, Middle Humboldt River, North-Central Nevada Model input and output from Precipitation Runoff Modeling System (PRMS) simulation of the Red River basin 1981-2016 Output Data by HUC4 Sub-basin for Hydrologic Simulations of the CONUS using the NHM-PRMS, 1950-2010, Maurer Calibration, Static Parameters Output Data by HUC4 Sub-basin for Hydrologic Simulations of the CONUS using the NHM-PRMS, 1950-2010, Maurer Calibration, Dynamic Parameters Model Input and Output for Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 GIS Features Used With Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 Streamflow Statistics for Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 River Channel Cross-Sections, Middle Humboldt River, North-Central Nevada Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change Modeled Streamflow Metrics on Small, Ungaged Stream Reaches in the Upper Colorado River Basin Model input and output from Precipitation Runoff Modeling System (PRMS) simulation of the Red River basin 1981-2016 Predicted hydrology (intermittency) under drier climate conditions Predicted intermittency Predicted frequency of low-flow pulse events Predicted minimum flow coefficient of variation Predicted 7-day minimum flow Predicted specific mean daily flow Predicted specific minimum flow Predicted mean annual number of zero-flow days Output Data by HUC4 Sub-basin for Hydrologic Simulations of the CONUS using the NHM-PRMS, 1950-2010, Maurer Calibration, Static Parameters Output Data by HUC4 Sub-basin for Hydrologic Simulations of the CONUS using the NHM-PRMS, 1950-2010, Maurer Calibration, Dynamic Parameters Model Input and Output for Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 GIS Features Used With Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 Streamflow Statistics for Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100