Skip to main content
Advanced Search

Filters: Tags: streamflow modeling (X) > Types: Citation (X)

18 results (43ms)   

View Results as: JSON ATOM CSV
thumbnail
The Apalachicola-Chattahoochee-Flint River Basin (ACFB) was modeled to produce fourteen simulations of streamflow for demonstration of enhancements to the Precipitation Runoff Modeling System (PRMS); seven simulations without water use effects and seven simulations with water use effects. The seven simulations without water use were for 1) the whole ACFB basin (1982-2012), 2) the Chestatee River sub-basin (1982-2012), 3) the Chipola River sub-basin (1982-2012), 4) the Ichawaynochaway Creek sub-basin (1982-2012), 5) the Potato Creek sub-basin (1942-2012), 6) the Spring Creek sub-basin (1952-2012), and 7) the upper Chattahoochee River sub-basin (1982-2012). The seven simulations with water use effects were for the...
thumbnail
This data release contains inputs for and outputs from hydrologic simulations of the Apalachicola-Chattahoochee-Flint River Basin (ACFB) in the southeastern U.S. using the Precipitation Runoff Modeling System (PRMS). Seven hydrologic models, one coarse-resolution model for the entire ACFB and six fine-resolution models of tributary sub-basins. These simulations were developed to provide estimates of water availability and statistics of streamflow. These PRMS model input and output data are intended to accompany a U.S. Geological Survey Scientific Investigations Report (LaFontaine and others, 2017); they include three types of data: 1) PRMS input parameter and data files, 2) PRMS output data files, and 3) GIS files...
thumbnail
Our objective was to model minimum flow coefficient of variation (CV) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between minimum flow CV (the standard deviation of annual minimum flows times 100 divided by the mean of annual minimum flows) on gaged streams (115 gages) and environmental variables....
thumbnail
Our objective was to model mean annual number of zero-flow days (days per year) for small streams in the Upper Colorado River Basin under historic hydrologic conditions on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between zero-flow days per year on gaged streams (115 gages) and environmental variables....
thumbnail
The Precipitation-Runoff Modeling System (PRMS) was used to produce simulations of streamflow for seven watersheds in eastern and central Montana for a baseline period (water years 1982-1999) and three future periods (water years 2021-2038, 2046–2063, and 2071-2038). The seven areas that were modeled are the O'Fallon, Redwater, Little Dry, Middle Musselshell, Judith, Cottonwood Creek, and Belt watersheds. Appendix 2 is provided as supplementary information to accompany the forthcoming journal article Potential Effects of Climate Change on Streamflow for Seven Watersheds in Eastern and Central Montana. These data document the monthly streamflow (in cubic meters per second) at the downstream end of each stream...
thumbnail
The hydrologic response units (HRUs) and stream segments available here are for an application of the Precipitation Runoff Modeling System (PRMS) in the southeastern United States by LaFontaine and others (2019). Geographic Information System (GIS) files for the HRUs and stream segments are provided as shapefiles with attribute hru_id_1 identifying the HRU numbering convention used in the PRMS model and seg_id_gcp identifying the stream segment numbering convention used in the PRMS model. This GIS files represent the watershed area for an approximately 1.16 million square kilometer area of the southeastern United States. A total of 20,251 HRUs and 10,742 stream segments are used in this modeling application. LaFontaine,...
thumbnail
The Apalachicola-Chattahoochee-Flint River Basin (ACFB) was modeled to produce fourteen simulations of streamflow with the Precipitation Runoff Modeling System (PRMS); seven simulations without water use effects and seven simulations with water use effects. The simulations were for 1) the whole ACFB basin (1982-2012), 2) the Chestatee River sub-basin (1982-2012), 3) the Chipola River sub-basin (1982-2012), 4) the Ichawaynochaway Creek sub-basin (1982-2012), 5) the Potato Creek sub-basin (1942-2012), 6) the Spring Creek sub-basin (1952-2012), and 7) the upper Chattahoochee River sub-basin (1982-2012). These data document the PRMS parameter files and input data files used in each of these simulations. Input files...
thumbnail
The stream segments available here are for seven applications of the Precipitation Runoff Modeling System (PRMS) in the Apalachicola-Chattahoochee-Flint River Basin (ACFB) by LaFontaine and others (2017). Geographic Information System (GIS) files for the stream segments in each of the seven model applications (whole ACFB, Chestatee River, Chipola River, Ichawaynochaway Creek, Potato Creek, Spring Creek, and Upper Chattahoochee River) are provided as shapefiles with attributes identifying the numbering convention used in the PRMS models of the ACFB.
thumbnail
Our objective was to model the risk of becoming intermittent under drier climate conditions on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a conditional inference modeling approach to model the relation between intermittency status on gaged streams (115 gages) and selected mean and minimum flow metrics. We then projected intermittency status and if a stream...
thumbnail
Our objective was to model specific mean daily flow (mean daily flow divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate.We used a random forest modeling approach to model the relation between specific mean daily flow on gaged streams (115 gages) and environmental variables. We then projected specific mean...
thumbnail
Our objective was to model specific minimum flow (mean of the annual minimum flows divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between specific minimum flow on gaged streams (115 gages) and environmental variables. We then projected...
thumbnail
The Precipitation-Runoff Modeling System (PRMS) was used to produce simulations of streamflow for seven watersheds in eastern and central Montana for a baseline period (water years 1982-1999) and three future periods (water years 2021-2038, 2046-2063, and 2071-2038). The seven areas that were modeled are the O'Fallon, Redwater, Little Dry, Middle Musselshell, Judith, Cottonwood Creek, and Belt watersheds. These data document the sources, values and ranges of selected input parameters used for PRMS simulations of streamflow for the O'Fallon, Redwater, Little Dry, Middle Musselshell, Judith, Cottonwood Creek, and Belt watersheds in eastern and central Montana. This appendix is provided as part of the supplementary...
thumbnail
Our objective was to model 7-day minimum flow (mean of the annual minimums of a 7-day moving average for each year [cubic feet per second]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between 7-day minimum flow on gaged streams (115 gages) and environmental variables. We then projected 7-day minimum...
thumbnail
This data set archives all inputs, outputs and scripts needed to reproduce the findings of W.H. Farmer and S. Levin in the 2017 Journal of the American Water Resources Association article entitled “Characterizing Uncertainty in Daily Streamflow Estimates at Ungauged Locations in Support of the Massachusetts Sustainable Yield Estimator”. Input data includes observed streamflow values, in cubic feet per second, for 66 streamgages in and around Massachusetts from 01 October 1960 through 30 September 2004. Cross-validated streamflows, in cubic feet per second, and estimated correlations are included for all basin pairs as archived by Archfield et al. (2010; USGS SIR 2009–5227). Comma-separated-values files contain output...
thumbnail
Our objective was to model frequency of low-pulse events on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between frequency of low-pulse events on gaged streams (115 gages) and environmental variables. We then projected frequency of low-pulse events to ungaged reaches in the Upper Colorado River Basin...
thumbnail
Fish in Northern Great Plains streams evolved to survive heat, cold, floods and drought; however changes in streamflow associated with long-term climate change may render some prairie streams uninhabitable for current fish species. To better understand future hydrology of these prairie streams, the Precipitation-Runoff Modeling System (PRMS) model and output from the RegCM3 Regional Climate model were used to simulate streamflows for seven watersheds in eastern and central Montana, for a baseline period (water years 1982 - 1999) and three future periods: water years 2021 -2038, 2046 - 2063, and 2071 - 2088. These PRMS model input and output data are intended to accompany a journal article (Chase et al., 2016); they...
thumbnail
The hydrologic response units (HRUs) available here are for seven applications of the Precipitation Runoff Modeling System (PRMS) in the Apalachicola-Chattahoochee-Flint River Basin (ACFB) by LaFontaine and others (2017). Geographic Information System (GIS) files for the HRUs in each of the seven model applications (whole ACFB, Chestatee River, Chipola River, Ichawaynochaway Creek, Potato Creek, Spring Creek, and Upper Chattahoochee River) are provided as shapefiles with attributes identifying the numbering convention used in the PRMS models of the ACFB.
thumbnail
Our objective was to model intermittency (perennial, weakly intermittent, or strongly intermittent) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate.We used a random forest modeling approach to model the relation between intermittency on gaged streams (115 gages) and environmental variables. We then projected intermittency status to ungaged reaches in the Upper Colorado...


    map background search result map search result map Potential Effects of Climate Change on Streamflow in Eastern and Central Montana (2013-2014 Analyses) - PRMS Model Input and Output Appendix 1. Sources, values, and ranges for selected Precipitation-Runoff Modeling System parameters for the seven study watersheds in eastern and central Montana. Appendix 2. Simulated monthly mean streamflows for the seven study watersheds in eastern and central Montana, for the baseline period (WY 1982 – 1999) and future periods (WYs 2021 – 2038, 2046 – 2063 and 2071 – 2088) for the three General Circulation Models used in the regional climate model. Predicted frequency of low-flow pulse events for small streams in the Upper Colorado River Basin under historic hydrologic conditions. Predicted intermittency of small streams in the Upper Colorado River Basin based on historic flow data Predicted minimum flow coefficient of variation (CV) for small streams in the Upper Colorado River Basin under historic hydrologic conditions. Predicted 7-day minimum flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted specific mean daily flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted specific minimum flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted hydrology (intermittency) of a given stream reach under drier climate conditions in the Upper Colorado River Basin Predicted mean annual number of zero-flow days of small streams in the Upper Colorado River Basin based on historic flow data Model Input and Output for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin using the Precipitation Runoff Modeling System Input Data for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Hydrologic Response Units Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. Stream Segments Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. Characterizing uncertainty in daily streamflow estimates at ungauged locations in support of the Massachusetts Sustainable Yield Estimator: Data release GIS Features Used With the Precipitation Runoff Modeling System for Hydrologic Simulations of the Southeastern United States Characterizing uncertainty in daily streamflow estimates at ungauged locations in support of the Massachusetts Sustainable Yield Estimator: Data release Input Data for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Model Input and Output for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin using the Precipitation Runoff Modeling System Hydrologic Response Units Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. Stream Segments Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. Potential Effects of Climate Change on Streamflow in Eastern and Central Montana (2013-2014 Analyses) - PRMS Model Input and Output Appendix 1. Sources, values, and ranges for selected Precipitation-Runoff Modeling System parameters for the seven study watersheds in eastern and central Montana. Appendix 2. Simulated monthly mean streamflows for the seven study watersheds in eastern and central Montana, for the baseline period (WY 1982 – 1999) and future periods (WYs 2021 – 2038, 2046 – 2063 and 2071 – 2088) for the three General Circulation Models used in the regional climate model. Predicted hydrology (intermittency) of a given stream reach under drier climate conditions in the Upper Colorado River Basin Predicted frequency of low-flow pulse events for small streams in the Upper Colorado River Basin under historic hydrologic conditions. Predicted intermittency of small streams in the Upper Colorado River Basin based on historic flow data Predicted minimum flow coefficient of variation (CV) for small streams in the Upper Colorado River Basin under historic hydrologic conditions. Predicted 7-day minimum flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted specific mean daily flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted specific minimum flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted mean annual number of zero-flow days of small streams in the Upper Colorado River Basin based on historic flow data GIS Features Used With the Precipitation Runoff Modeling System for Hydrologic Simulations of the Southeastern United States