Skip to main content
Advanced Search

Filters: Tags: streamflow modeling (X) > partyWithName: Jacob H LaFontaine (X) > partyWithName: Water Resources (X)

13 results (102ms)   

View Results as: JSON ATOM CSV
thumbnail
This data release contains inputs for and outputs from hydrologic simulations of the upper Chattahoochee River Basin in northeast Georgia using the Precipitation Runoff Modeling System (PRMS). These simulations were developed to provide example applications of enhancements to the PRMS for the following topics: two new time-series input options (dynamic parameter module and water-use module), two new output options (Hydrologic Response Unit (HRU) summary output module and basin variables summary output module), and three updates of existing capabilities (stream and lake flow routing module, surface-depression storage and flow simulation, and the initial-conditions specification). These PRMS model input and output...
thumbnail
The southeastern United States was modeled to produce 59 simulations of historical and potential future streamflow using the Precipitation Runoff Modeling System (PRMS) as part of the study documented in LaFontaine and others (2019). One simulation used historical observations of climate, 13 used historical climate simulations using statistically downscaled general circulation model (GCM) output from the Coupled Model Intercomparison Project (CMIP5), and 45 used potential future climate simulations using statistically downscaled CMIP5 GCMs for four representative concentration pathways. Historical simulations with observations are for the period 1952-2010, historical simulations with the GCMs are for the period...
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains atmospheric forcings (daily minimum air temperature, daily maximum air temperature, and daily precipitation accumulation) from each of the global circulation models (GCMs) presented in table1_GCMs_used.csv, using the Representative Concentration Pathway 4.5 for simulating potential future streamflow for the period 2006 - 2100.
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains a suite of 52 streamflow metrics. These metrics were computed using daily outputs of runoff from HRUs (PRMS variable hru_outflow) and streamflow from the model stream segments (PRMS variable seg_outflow) for all historical and future simulations (table1_GCMs_used.csv) with both static and dynamic land cover parameters. These streamflow statistics describe the duration, frequency, magnitude, rate of change, and...
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains the spatial model features (hydrologic response units [HRU_subset.zip] and stream segments [Segments_subset.zip]) on which model inputs and outputs are based. The assembly of model-ready files results in HRU and segment IDs that are different than those in the NHMI database. Two "crosswalk files" (nhm_hru_id_crosswalk.csv, nhm_segment_id_crosswalk.csv) are provided so that the model inputs and outputs can be mapped...
thumbnail
The statistically-based estimates of streamflow included here are for the headwater watersheds in the study area described in LaFontaine and others (2019), and were developed using the ordinary kriging methodology described in Farmer (2016). There are four files included that describe the maximum, minimum, mean, and median estimated streamflow for each headwater on a daily time step for the period 10/1/1980-9/30/2010. A GIS shapefile of the headwaters is also included here. Farmer, W.H., 2016, Ordinary kriging as a tool to estimate historical daily streamflow records: Hydrology and Earth System Sciences, v. 20, no. 7, p. 2721-2735, accessed September 27, 2017, at https://doi.org/10.5194/hess-20-2721-2016. LaFontaine,...
thumbnail
This data release contains inputs for and outputs from hydrologic simulations for the conterminous United States (CONUS) using the Precipitation Runoff Modeling System (PRMS) version 5.1.0 (https://www.usgs.gov/software/precipitation-runoff-modeling-system-prms) and the USGS National Hydrologic Model Infrastructure (NHMI, Regan and others, 2018). These simulations were developed to provide estimates of the water budget and statistics of streamflow for historical and potential future conditions using atmospheric forcing data from Coupled Model Intercomparison Project phase 5 (CMIP5). Specific file types include: 1) input forcings of minimum air temperature, maximum air temperature, and daily precipitation derived...
thumbnail
The southeastern United States was modeled to produce historical and potential future simulations of streamflow statistics using the Precipitation Runoff Modeling System (PRMS) as part of the study documented in LaFontaine and others (2019). Hydrologic simulations using one observation-based historical climate dataset (Maurer and others, 2002), 13 used historical climate simulations using statistically downscaled general circulation model (GCM) output from the Coupled Model Intercomparison Project (CMIP5), and 45 used potential future climate simulations using statistically downscaled CMIP5 GCMs for four representative concentration pathways were used for the computation of 52 hydrologic statistics of streamflow...
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains atmospheric forcings (daily minimum air temperature, daily maximum air temperature, and daily precipitation accumulation) from each of the global circulation models (GCMs) presented in table1_GCMs_used.csv, using the Representative Concentration Pathway (RCP) 2.6 for simulating potential future streamflow for the period 2006 - 2100.
thumbnail
This data release contains inputs for and outputs from hydrologic simulations of the southeastern U.S. using the Monthly Water Balance Model, the Precipitation Runoff Modeling System (PRMS), and statistically-based methods. These simulations were developed to provide estimates of water availability and statistics of streamflow for historical and potential future conditions for an area of approximately 1.16 million square miles. These model input and output data are intended to accompany a U.S. Geological Survey Scientific Investigations Report (LaFontaine and others, 2019); they include four types of data: 1) model input parameters, 2) model output statistics, 3) GIS files of the model hydrologic response units...
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains atmospheric forcings (daily minimum air temperature, daily maximum air temperature, and daily precipitation accumulation) from each of the global circulation models (GCMs) presented in table1_GCMs_used.csv, for simulating historical streamflow for the period 1950 - 2005.
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains forcings (daily minimum air temperature, daily maximum air temperature, and daily precipitation) from each of the global circulation models (GCMs) presented in table1_GCMs_used.csv, using the Representative Concentration Pathway (RCP) 6.0 for simulating potential future streamflow for the period 2006 - 2100.
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains outputs of streamflow for each stream segment in the model domain and is based on parameterization with static land cover. Simulations were conducted for each of the global circulation model (GCMs) and relative concentration pathway (RCP) presented in table1_GCMs_used.csv.


    map background search result map search result map Model Input and Output for Hydrologic Simulations of the Upper Chattahoochee River Basin that Demonstrate Enhancements to the Precipitation Runoff Modeling System Model Input and Output for Hydrologic Simulations of the Southeastern United States for Historical and Future Conditions Statistical Streamflow Simulations for 1980-2010 and Headwater GIS Features of the Southeastern United States Precipitation Runoff Modeling System Input Data for Hydrologic Simulations of the Southeastern United States for Historical and Future Conditions Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Southeastern United States for Historical and Future Conditions Model Input and Output for Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 Input Files for Hydrologic Simulations for the Conterminous United States for Historical Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) Output Files from Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) with Static Land Cover Input Files for Hydrologic Simulations for the Conterminous United States for Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) Representative Concentration Pathway (RCP) 4.5 GIS Features Used With Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 Input Files for Hydrologic Simulations for the Conterminous United States for Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) Representative Concentration Pathway (RCP) 2.6 Input Files for Hydrologic Simulations for the Conterminous United States for Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) Representative Concentration Pathway (RCP) 6.0 Streamflow Statistics for Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 Model Input and Output for Hydrologic Simulations of the Upper Chattahoochee River Basin that Demonstrate Enhancements to the Precipitation Runoff Modeling System Model Input and Output for Hydrologic Simulations of the Southeastern United States for Historical and Future Conditions Statistical Streamflow Simulations for 1980-2010 and Headwater GIS Features of the Southeastern United States Precipitation Runoff Modeling System Input Data for Hydrologic Simulations of the Southeastern United States for Historical and Future Conditions Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Southeastern United States for Historical and Future Conditions Model Input and Output for Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 Input Files for Hydrologic Simulations for the Conterminous United States for Historical Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) Output Files from Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) with Static Land Cover Input Files for Hydrologic Simulations for the Conterminous United States for Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) Representative Concentration Pathway (RCP) 4.5 GIS Features Used With Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100 Input Files for Hydrologic Simulations for the Conterminous United States for Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) Representative Concentration Pathway (RCP) 2.6 Input Files for Hydrologic Simulations for the Conterminous United States for Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) Representative Concentration Pathway (RCP) 6.0 Streamflow Statistics for Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5), 1950 - 2100