Skip to main content
Advanced Search

Filters: Tags: streamflow modeling (X)

66 results (70ms)   

View Results as: JSON ATOM CSV
thumbnail
The USGS and Newmont Mining Corp. surveyed 51 cross sections to determine hydraulic characteristics throughout 12 model reaches. The accuracy of the surveyed cross sections is believed to be +/- 0.5 ft. Field surveys included measuring the channel cross section up to the approximate altitude of the highest flood and includes auxiliary channels. Surveyed cross sections generally were at representative locations about every 3 miles along the Humboldt River channel. In areas where long overbank sections occurred, supplemental altitudes were determined from topographic maps in order to extend surveyed parts of cross sections so that each section represented the full width of the floodplain. In this dataset there is...
thumbnail
The hydrologic response units (HRUs) and stream segments available here are for an application of the Precipitation Runoff Modeling System (PRMS) in the southeastern United States by LaFontaine and others (2019). Geographic Information System (GIS) files for the HRUs and stream segments are provided as shapefiles with attribute hru_id_1 identifying the HRU numbering convention used in the PRMS model and seg_id_gcp identifying the stream segment numbering convention used in the PRMS model. This GIS files represent the watershed area for an approximately 1.16 million square kilometer area of the southeastern United States. A total of 20,251 HRUs and 10,742 stream segments are used in this modeling application. LaFontaine,...
thumbnail
Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, latesummer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the...
thumbnail
The datasets herein are the observed instantaneous values of streamflow for the titled U.S. Geological Survey streamgage with precipitation metadata added. Days where streamflow is directly affected by precipitation and the day afterwards is identified with a "B". Two days after a precipitation event is identified with a "C". If the streamflow was affected by snow or ice, the data is identified with a "D". Any data that is not precipitation influenced is identified with an "A". This metadata was applied on the basis of numerous rain gages in the vicinity of the streamgage and radar images obtained from the National Oceanic and Atmospheric Administration website https://www.ncdc.noaa.gov/data-access/radar-data/radar-map-tool...
thumbnail
Streamflow was collected at various streamgages in western Pennsylvania in support of the scientific investigations report "Estimation of Base Flow on Ungaged, Periodically Measured Streams in Small Watersheds in Western Pennsylvania". Data observed at the streamgages for the period of August 1, 2014 through March 31, 2017 are considered. This dataset includes 1) observed streamflow and qualifier indicating the presence of precipitation or runoff at various streamgages, 2) all data used to develop prediction intervals for the titled estimation site based upon the titled index streamgage for use in runoff influenced streamflow analysis, 3) all data used to develop prediction intervals for the titled estimation site...
thumbnail
The Apalachicola-Chattahoochee-Flint River Basin (ACFB) was modeled to produce fourteen simulations of streamflow with the Precipitation Runoff Modeling System (PRMS); seven simulations without water use effects and seven simulations with water use effects. The simulations were for 1) the whole ACFB basin (1982-2012), 2) the Chestatee River sub-basin (1982-2012), 3) the Chipola River sub-basin (1982-2012), 4) the Ichawaynochaway Creek sub-basin (1982-2012), 5) the Potato Creek sub-basin (1942-2012), 6) the Spring Creek sub-basin (1952-2012), and 7) the upper Chattahoochee River sub-basin (1982-2012). These data document the PRMS parameter files and input data files used in each of these simulations. Input files...
thumbnail
Streamflow was collected at various streamgages in western Pennsylvania in support of the scientific investigations report "Estimation of Base Flow on Ungaged, Periodically Measured Streams in Small Watersheds in Western Pennsylvania". Data were selected for the development of eleven regressions on three streamgage pairs to examine differences in the regression diagnostics and prediction interval based upon the data chosen for the regression. This dataset includes 1) data used to develop prediction intervals for the titled estimation site based upon the titled index streamgage, 2) zero streamflow information, and 3) evaluation of the prediction interval with non-runoff influenced data. For prediction interval development...
thumbnail
Streamflow was collected at various streamgages in western Pennsylvania in support of the scientific investigations report "Estimation of Base Flow on Ungaged, Periodically Measured Streams in Small Watersheds in Western Pennsylvania". Data observed at the streamgages for the period of August 1, 2014 through March 31, 2017 are considered. This dataset includes 1) all data used to develop prediction intervals for the titled estimation site based upon the titled index streamgage for the period of May 1, 2015 to March 31, 2017 and 2) evaluation of data observed before May 1, 2015. For prediction interval development, a Move.1 regression was developed between the titled estimation site and titled index streamgage. From...
thumbnail
This child page contains the requisite folder structure along with the model input and output data used in calibrating two Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) models during the calibration period of the study detailed in the associated Scientific Investigations Report "Comparison of Storm Runoff Models for a Small Watershed in an Urban Metropolitan Area, Albuquerque, New Mexico" (Shephard and Douglas-Mankin, 2020). One model uses a curve-number based loss method approach, and the other model uses an initial and constant infiltration rate loss method. Each model was used to simulate storm runoff in the Hahn Arroyo Watershed, an urbanized watershed with concrete lined channels in the...
thumbnail
The statistically-based estimates of streamflow included here are for the headwater watersheds in the study area described in LaFontaine and others (2019), and were developed using the ordinary kriging methodology described in Farmer (2016). There are four files included that describe the maximum, minimum, mean, and median estimated streamflow for each headwater on a daily time step for the period 10/1/1980-9/30/2010. A GIS shapefile of the headwaters is also included here. Farmer, W.H., 2016, Ordinary kriging as a tool to estimate historical daily streamflow records: Hydrology and Earth System Sciences, v. 20, no. 7, p. 2721-2735, accessed September 27, 2017, at https://doi.org/10.5194/hess-20-2721-2016. LaFontaine,...
thumbnail
Our objective was to model mean annual number of zero-flow days (days per year) for small streams in the Upper Colorado River Basin under historic hydrologic conditions on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between zero-flow days per year on gaged streams (115 gages) and environmental variables....
thumbnail
Streamflow was collected at various streamgages in western Pennsylvania in support of the scientific investigations report "Estimation of Base Flow on Ungaged, Periodically Measured Streams in Small Watersheds in Western Pennsylvania". Data observed at the streamgages for the period of August 1, 2014 through March 31, 2017 are considered. This dataset includes 1) all data used to develop prediction intervals for the titled estimation site based upon the titled index streamgage for the period of May 1, 2015 to March 31, 2017 and 2) evaluation of data observed before May 1, 2015. For prediction interval development, a Move.1 regression was developed between the titled estimation site and titled index streamgage. From...
thumbnail
Streamflow was collected at various streamgages in western Pennsylvania in support of the scientific investigations report "Estimation of Base Flow on Ungaged, Periodically Measured Streams in Small Watersheds in Western Pennsylvania". Data observed at the streamgages for the period of August 1, 2014 through March 31, 2017 are considered. This dataset includes 1) all data used to develop prediction intervals for the titled estimation site based upon the titled index streamgage for the period of May 1, 2015 to March 31, 2017 and 2) evaluation of data observed before May 1, 2015. For prediction interval development, a Move.1 regression was developed between the titled estimation site and titled index streamgage. From...
thumbnail
The stream segments available here are for seven applications of the Precipitation Runoff Modeling System (PRMS) in the Apalachicola-Chattahoochee-Flint River Basin (ACFB) by LaFontaine and others (2017). Geographic Information System (GIS) files for the stream segments in each of the seven model applications (whole ACFB, Chestatee River, Chipola River, Ichawaynochaway Creek, Potato Creek, Spring Creek, and Upper Chattahoochee River) are provided as shapefiles with attributes identifying the numbering convention used in the PRMS models of the ACFB.
thumbnail
The Precipitation-Runoff Modeling System (PRMS) was used to produce simulations of streamflow for seven watersheds in eastern and central Montana for a baseline period (water years 1982-1999) and three future periods (water years 2021-2038, 2046-2063, and 2071-2038). The seven areas that were modeled are the O'Fallon, Redwater, Little Dry, Middle Musselshell, Judith, Cottonwood Creek, and Belt watersheds. These data document the sources, values and ranges of selected input parameters used for PRMS simulations of streamflow for the O'Fallon, Redwater, Little Dry, Middle Musselshell, Judith, Cottonwood Creek, and Belt watersheds in eastern and central Montana. This appendix is provided as part of the supplementary...
thumbnail
Our objective was to model specific mean daily flow (mean daily flow divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate.We used a random forest modeling approach to model the relation between specific mean daily flow on gaged streams (115 gages) and environmental variables. We then projected specific mean...
thumbnail
Our objective was to model specific minimum flow (mean of the annual minimum flows divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between specific minimum flow on gaged streams (115 gages) and environmental variables. We then projected...
thumbnail
Our objective was to model the risk of becoming intermittent under drier climate conditions on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a conditional inference modeling approach to model the relation between intermittency status on gaged streams (115 gages) and selected mean and minimum flow metrics. We then projected intermittency status and if a stream...
thumbnail
Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow...
thumbnail
The southeastern United States was modeled to produce historical and potential future simulations of streamflow statistics using the Precipitation Runoff Modeling System (PRMS) as part of the study documented in LaFontaine and others (2019). Hydrologic simulations using one observation-based historical climate dataset (Maurer and others, 2002), 13 used historical climate simulations using statistically downscaled general circulation model (GCM) output from the Coupled Model Intercomparison Project (CMIP5), and 45 used potential future climate simulations using statistically downscaled CMIP5 GCMs for four representative concentration pathways were used for the computation of 52 hydrologic statistics of streamflow...


map background search result map search result map Appendix 1. Sources, values, and ranges for selected Precipitation-Runoff Modeling System parameters for the seven study watersheds in eastern and central Montana. Predicted specific mean daily flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted specific minimum flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted hydrology (intermittency) of a given stream reach under drier climate conditions in the Upper Colorado River Basin Predicted mean annual number of zero-flow days Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change Modeled Streamflow Metrics on Small, Ungaged Stream Reaches in the Upper Colorado River Basin Input Data for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Stream Segments Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. Statistical Streamflow Simulations for 1980-2010 and Headwater GIS Features of the Southeastern United States Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Southeastern United States for Historical and Future Conditions GIS Features Used With the Precipitation Runoff Modeling System for Hydrologic Simulations of the Southeastern United States Index-gage Data and Regressions in Support of Estimation of Base Flow on Ungaged, Periodically Measured Streams in Small Watersheds in Western Pennsylvania River Channel Cross-Sections, Middle Humboldt River, North-Central Nevada Streamgage Streamflow with Precipitation and Runoff Indication Measurement Schedule Regressions Estimation Site 03107698; Spreadsheets and Metadata Estimation Site 03111200; Spreadsheets and Metadata Estimation Site 03111235; Spreadsheets and Metadata HEC-HMS Calibration Period Input and Output Data HEC-HMS Calibration Period Input and Output Data River Channel Cross-Sections, Middle Humboldt River, North-Central Nevada Index-gage Data and Regressions in Support of Estimation of Base Flow on Ungaged, Periodically Measured Streams in Small Watersheds in Western Pennsylvania Streamgage Streamflow with Precipitation and Runoff Indication Measurement Schedule Regressions Estimation Site 03107698; Spreadsheets and Metadata Estimation Site 03111200; Spreadsheets and Metadata Estimation Site 03111235; Spreadsheets and Metadata Input Data for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Stream Segments Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. Appendix 1. Sources, values, and ranges for selected Precipitation-Runoff Modeling System parameters for the seven study watersheds in eastern and central Montana. Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change Modeled Streamflow Metrics on Small, Ungaged Stream Reaches in the Upper Colorado River Basin Predicted hydrology (intermittency) of a given stream reach under drier climate conditions in the Upper Colorado River Basin Predicted mean annual number of zero-flow days Predicted specific mean daily flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted specific minimum flow of small streams in the Upper Colorado River Basin based on historic flow data Statistical Streamflow Simulations for 1980-2010 and Headwater GIS Features of the Southeastern United States Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Southeastern United States for Historical and Future Conditions GIS Features Used With the Precipitation Runoff Modeling System for Hydrologic Simulations of the Southeastern United States