Skip to main content
Advanced Search

Filters: Tags: tamarisk (X) > Types: OGC WMS Layer (X)

59 results (9ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset represents ease of access to bottomland areas for vegetation treatments. Access may be by road, 4x4 near road, hike in by field crews or requiring overnight camping or raft access. Access is considered for each side of the river separately.
thumbnail
This data set shows the extent of the Colorado River Conservation Planning project bottomland area as delineated by topography and vegetation, The bottomland area is subdivided into 1 km polygons measured from the upstream project boundary. Reach breaks were determined by large topographic shifts and/or tributary junctions by John Dohrenwend. Please see the project report for more details.
thumbnail
This is a model showing general habitat diversity, including both the structural and cover type diversity. See Open File Report, Rasmussen and Shafroth, Colorado River Conservation Planning for geoprocessing details.
thumbnail
This dataset represents the relative average amount of non-woody cover within 2 ha) of bottomland along the Colorado River from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation...
thumbnail
This dataset represents the variety (unique structural classes: water, bare, herbaceous, short shrubs, medium shrubs, short trees, tall trees) within 1 ha of bottomland areas. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation of ground qualities. Due to the "snapshot" nature of the aerial photos,...
thumbnail
This map shows the channel boundary (2011) of the Colorado River mainstem between the Utah Colorado border and the upper pool of Lake Powell, Utah (146 miles). The channel boundary was mapped from public available NAIP imagery flown on June 28, 2011, when the river flow was 886 m3/s at the Cisco gage. The channel is subdivided into channel types: fast water (main channel, secondary channel), and still water types (backwater, isolated pool and tributary channel).
thumbnail
This dataset represents the prevalence of trees as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This map shows stillness of water near bank vegetation within 15 m of the channel boundary (2011) of the Colorado River mainstem between the Utah Colorado border and the upper pool of Lake Powell, Utah (146 miles). The channel boundary was mapped from public available NAIP imagery flown on June 28, 2011, when the river flow was 886 m3/s at the Cisco gage. The channel is subdivided into channel types: main channel, secondary channel, backwater, isolated pool and tributary channel.
thumbnail
Our proposal addresses Funding Category Ill by evaluating natural resource management practices and adaptation opportunities. More specifically, our project addresses Science Need #6 to improve monitoring and inventory of watersheds and ecosystems (including invasive species). Our proposed study will occur within the Southern Rockies Landscape Conservation Cooperative (LCC) (upper Virgin River, UT) and the Desert LCC (lower Virgin River, AZ and NVL and therefore will be submitting to both cooperatives. Invasive saltcedar (Tamarix spp.) is the third most abundant tree in Southwestern riparian systems (Friedman et al. 2005). Resource managers must often balance the management goals of protecting wildlife species and...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
Introduction: Tamarisk (Tamarix spp., also saltcedar) is a non-native tree introduced to the United States during the 19th century as an ornamental species and solution to erosion in the American West (Robinson 1965). Tamarisk can form dense monotypic stands, which have been linked to a decline in richness and diversity of native plants (Engel-Wilson & Ohmart 1978; Lovich et al. 1994) and wildlife (Anderson et al. 1977; Durst et al. 2008) in riparian areas. As a result, natural resource managers have invested millions of dollars to control tamarisk (Shafroth & Briggs 2008). Few studies have conducted community-level analyses to document the impact of one of these methods, the introduction of a native enemy or predator,...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
Executive Summary: Portions of broad-scale ecoregions of the Great Plains, and Southern Semiarid Highlands were generally projected as mostly suitable for large fires of low severity within 31 years. Under a 2070 future climate scenario of high CO2 emission (HadGEM2-ES RCP8.5) a significant increase in suitability for large low severity wildfires was seen in Wyoming and Montana, which was accompanied by a decrease in suitability for the Madrean Archipelago and portions of central and west Texas. Broad scale niche model for the Southwestern Willow Flycatcher under current climate was centered within the known breeding range mostly along riparian areas. Under a 2070 future climate scenario of high CO2 emission (HadGEM2-ES...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2014, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
This dataset represents the diversity of woody cover types (averaged per 1.5 ha) as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This dataset represents the prevalence of tamarisk (tamarisk penalty) as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation of...
thumbnail
This is a habitat suitability model riparian understory species in the Colorado River bottomland in Utah. The model incorporates the density of shrubs, the number of shrub species present, and the stillness of adjacent water.
thumbnail
This dataset represents the presence/absence of non-native, woody and herbaceous cover types in vegetation patches, as mapped from high resolution imagery from 2010. Each type (woody or herbaceous) requires different techniques, equipment and approaches, impacting treatment costs. This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This dataset represents the prevalence of native trees as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This dataset represents the prevalence of tamarisk as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. photos, this cover layer reflects conditions that existed when the imagery was collected (September, 2010). This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This is a fire risk model for riparian trees on the Colorado River bottomland in Utah. The model incorporates the prevalence of riparian trees and tamarisk, and proximity to human caused ignition sources (campgrounds and roads). See Open File Report, Rasmussen and Shafroth, Colorado River Conservation Planning, for geoprocessing details.
thumbnail
In regulated rivers of the southwest, reduced flooding and the invasion of tamarisk contributes to accumulation of greater fuel loads and increased riparian fire frequency. As a result, some desert riparian areas, historically considered barriers to wildfire, have been converted into pathways for wildfire spread. Fire-smart management strategies are needed to protect sensitive riparian species and reduce fire risk from increased fire frequency due to interactions of climate change, tamarisk invasion, and tamarisk beetle activity. Fire niche simulations will be used to project impacts of fire frequency and climate change, which can be used to highlight areas of the Desert LCC where Southwestern Willow Flycatcher,...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2014, AZ-01, AZ-02, AZ-03, AZ-04, All tags...


map background search result map search result map Effects of Bio-Control and Restoration on Wildlife in Southwestern Riparian Habitats Fire-smart Southwestern Riparian Landscape Management and Restoration of Native Biodiversity in View of Species of Conservation Concern and the Impacts of Tamarisk Beetles Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - General Diversity Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Conservation Planning for the Colorado River in Utah - Tamarisk Penalty for Riparian Overstory Model Conservation Planning for the Colorado River in Utah - Prevalence of Trees for Riparian Overstory Layer Model Conservation Planning for the Colorado River in Utah - Diversity of Woody Structure for Riparian Overstory Model Conservation Planning for the Colorado River in Utah - Riparian Understory Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Presence of Still Water Plus 20 m for Riparian Understory Model Conservation Planning for the Colorado River in Utah - Distance to Permanent Water for Rocky Fringe Snakes Model Conservation Planning for the Colorado River in Utah - Access to the Site for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Structural Types of Non-Native Species for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Density of Native Riparian Trees for Fire Risk Model Conservation Planning for the Colorado River in Utah - Density of Tamarisk for Fire Risk Model Conservation Planning for the Colorado River in Utah - Fire Risk Model with Human Ignition Sources Output Data for Colorado River in Utah Final Report: Effects of Biocontrol and Restoration on Wildlife in Southwestern Riparian Habitats Final Report: Fire-smart southwestern riparian landscape management and restoration of native biodiversity in view of species of conservation concern and the impacts of tamarisk beetles Conservation Planning for the Colorado River in Utah - Bottomland Boundary of the Colorado River Divided at Homogeneous River Reaches Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - Riparian Understory Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Structural Types of Non-Native Species for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Conservation Planning for the Colorado River in Utah - General Diversity Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Conservation Planning for the Colorado River in Utah - Diversity of Woody Structure for Riparian Overstory Model Conservation Planning for the Colorado River in Utah - Prevalence of Trees for Riparian Overstory Layer Model Conservation Planning for the Colorado River in Utah - Tamarisk Penalty for Riparian Overstory Model Conservation Planning for the Colorado River in Utah - Density of Tamarisk for Fire Risk Model Conservation Planning for the Colorado River in Utah - Density of Native Riparian Trees for Fire Risk Model Conservation Planning for the Colorado River in Utah - Fire Risk Model with Human Ignition Sources Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Access to the Site for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Distance to Permanent Water for Rocky Fringe Snakes Model Conservation Planning for the Colorado River in Utah - Presence of Still Water Plus 20 m for Riparian Understory Model Conservation Planning for the Colorado River in Utah - Bottomland Boundary of the Colorado River Divided at Homogeneous River Reaches Effects of Bio-Control and Restoration on Wildlife in Southwestern Riparian Habitats Final Report: Effects of Biocontrol and Restoration on Wildlife in Southwestern Riparian Habitats Fire-smart Southwestern Riparian Landscape Management and Restoration of Native Biodiversity in View of Species of Conservation Concern and the Impacts of Tamarisk Beetles Final Report: Fire-smart southwestern riparian landscape management and restoration of native biodiversity in view of species of conservation concern and the impacts of tamarisk beetles