Skip to main content
Advanced Search

Filters: Tags: wetland change (X) > partyWithName: Ecosystems (X)

42 results (49ms)   

View Results as: JSON ATOM CSV
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
The tables presented here quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period by 10-digit Hydrologic Unit Code (HUC10) in the Gulf of Mexico. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
thumbnail
The analyses of landscape change presented in this dataset use Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM) and Operational Land Imager (OLI) to assess changes in land area through time. All cloud-free dates of imagery from 1984 through early 2016 were used in this analysis. This amounted to a total of 174 dates of imagery which were analyzed. No water level restrictions were used during the image selection process as gages with a period of record sufficient for this analysis are not available nearby. Persistent loss and gain data are presented for 1984-2016.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
thumbnail
Coastal Louisiana wetlands are one of the most critically threatened environments in the United States. These wetlands are in peril because Louisiana currently experiences greater coastal wetland loss than all other States in the contiguous United States combined. The datasets presented here were utilized in a larger effort to quantify landscape changes from 1932 to 2016. Analyses show that coastal Louisiana has experienced a net change in land area of approximately -4,833 square kilometers (modeled estimate: -5,197 +/- 443 square kilometers) from 1932 to 2016. This net change in land area amounts to a decrease of approximately 25 percent of the 1932 land area. Previous studies have presented linear rates of change...
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
thumbnail
Coastal Louisiana wetlands are one of the most critically threatened environments in the United States. These wetlands are in peril because Louisiana currently experiences greater coastal wetland loss than all other States in the contiguous United States combined. The analyses of landscape change presented here have utilized historical surveys, aerial, and satellite data to quantify landscape changes from 1932 to 2016. Analyses show that coastal Louisiana has experienced a net change in land area of approximately -4,833 square kilometers (modeled estimate: -5,197 +/- 443 square kilometers) from 1932 to 2016. This net change in land area amounts to a decrease of approximately 25 percent of the 1932 land area. Previous...
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.


map background search result map search result map Mississippi barrier island land area change 1984-2016 Land area change in Coastal Louisiana (1932 to 2016) - persistent land change spatial data Land area in coastal Louisiana (1932 to 2016) - land area spatial data - multi-date composites for specific years L5_1989_GOM_Fractional_Land_FAV_SAV_Water L5_1990_GOM_Fractional_Land_FAV_SAV_Water L5_1991_GOM_Fractional_Land_FAV_SAV_Water L5_1992_GOM_Fractional_Land_FAV_SAV_Water L5_1993_GOM_Fractional_Land_FAV_SAV_Water L5_1995_GOM_Fractional_Land_FAV_SAV_Water L5_1996_GOM_Fractional_Land_FAV_SAV_Water L5_1999_GOM_Fractional_Land_FAV_SAV_Water L5_2000_GOM_Fractional_Land_FAV_SAV_Water L5_2001_GOM_Fractional_Land_FAV_SAV_Water L5_2003_GOM_Fractional_Land_FAV_SAV_Water L5_2004_GOM_Fractional_Land_FAV_SAV_Water L5_2008_GOM_Fractional_Land_FAV_SAV_Water_pre_Hurricanes_Gustav_Ike L5_2008_GOM_Fractional_Land_FAV_SAV_Water_post_Hurricanes_Gustav_Ike L8_2013_GOM_Fractional_Land_FAV_SAV_Water L8_2016_GOM_Fractional_Land_FAV_SAV_Water Gulf of Mexico Land Area Change in Wetland Possible Zone by Hydrologic Unit Code (HUC) Tables Mississippi barrier island land area change 1984-2016 Land area in coastal Louisiana (1932 to 2016) - land area spatial data - multi-date composites for specific years Land area change in Coastal Louisiana (1932 to 2016) - persistent land change spatial data Gulf of Mexico Land Area Change in Wetland Possible Zone by Hydrologic Unit Code (HUC) Tables L5_1989_GOM_Fractional_Land_FAV_SAV_Water L5_1990_GOM_Fractional_Land_FAV_SAV_Water L5_1991_GOM_Fractional_Land_FAV_SAV_Water L5_1992_GOM_Fractional_Land_FAV_SAV_Water L5_1993_GOM_Fractional_Land_FAV_SAV_Water L5_1995_GOM_Fractional_Land_FAV_SAV_Water L5_1996_GOM_Fractional_Land_FAV_SAV_Water L5_1999_GOM_Fractional_Land_FAV_SAV_Water L5_2000_GOM_Fractional_Land_FAV_SAV_Water L5_2001_GOM_Fractional_Land_FAV_SAV_Water L5_2003_GOM_Fractional_Land_FAV_SAV_Water L5_2004_GOM_Fractional_Land_FAV_SAV_Water L5_2008_GOM_Fractional_Land_FAV_SAV_Water_pre_Hurricanes_Gustav_Ike L5_2008_GOM_Fractional_Land_FAV_SAV_Water_post_Hurricanes_Gustav_Ike L8_2013_GOM_Fractional_Land_FAV_SAV_Water L8_2016_GOM_Fractional_Land_FAV_SAV_Water