Skip to main content
Advanced Search

Filters: Tags: wildfire (X)

592 results (37ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Reference evapotranspiration (ET0), like potential evapotranspiration, is a measure of atmospheric evaporative demand. It was used in the context of this study to evaluate drought conditions that can lead to wildfire activity in Alaska using the Evaporative Demand Drought Index (EDDI) and the Standardized Precipitation Evapotranspiration Index (SPEI). The ET0 data are on a 20km grid with daily temporal resolution and were computed using the meteorological inputs from the dynamically downscaled ERA-Interim reanalysis and two global climate model projections (CCSM4 and GFDL-CM3). The model projections are from CMIP5 and use the RCP8.5 scenario. The dynamically downscaled data are available at https://registry.opendata.aws/wrf-alaska-snap/....
thumbnail
The U.S. Geological Survey (USGS) has developed and implemented an algorithm that identifies burned areas in temporally-dense time series of Landsat Analysis Ready Data (ARD) scenes to produce the Landsat Burned Area Products. The algorithm makes use of predictors derived from individual ARD Landsat scenes, lagged reference conditions, and change metrics between the scene and reference conditions. Scene-level products include pixel-level burn probability (BP) and burn classification (BC) images, corresponding to each Landsat image in the ARD time series. Annual composite products are also available by summarizing the scene level products. Prior to generating annual composites, individual scenes that had > 0.010...
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the folder there are 8 raster tiffs. 1. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit i. Band 1 of the Tiff is Band 3 (Red) of Landsat ii. Band 2 of the Tiff is Band 4 (NIR) of Landsat iii. Band 3 of...
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the folder there are 8 raster tiffs. 1. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit i. Band 1 of the Tiff is Band 3 (Red) of Landsat ii. Band 2 of the Tiff is Band 4 (NIR) of Landsat iii. Band 3 of...
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (including wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer includes...
thumbnail
The National Park Service (NPS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic...
thumbnail
This product is published on a provisional basis to provide necessary information to individuals assessing burn severity impacts on a time sensitive basis. This product was produced using the methods of the Monitoring Trends in Burn Severity (MTBS) Program, however this fire may not meet the criteria for an MTBS initial assessment. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. MTBS typically maps fires using an initial assessment (immediately after the fire) or an extended assessment (peak of green the season after...
thumbnail
These data products are preliminary burn severity assessments derived from post sensor data (including Landsat TM, Landsat ETM+, Landsat OLI, Sentinel 2A, and Sentinel 2B). The pre-fire and post-fire subsets included were used to create a differenced Normalized Burn Ratio (dNBR) image. The dNBR image attempts to portray the variation of burn severity within a fire. The severity ratings are influenced by the effects to the canopy. The severity rating is based upon a composite of the severity to the understory (grass, shrub layers), midstory trees and overstory trees. Because there is often a strong correlation between canopy consumption and soil effects, this algorithm works in many cases for Burned Area Emergency...


map background search result map search result map Monitoring Trends in Burn Severity (ver. 7.0, January 2024) Monitoring Trends in Burn Severity Thematic Burn Severity Mosaic for 2013 (ver. 5.0, August 2023) Landsat Burned Area Products Data Release - Landsat 5 TM products Gridded 20km Daily Reference Evapotranspiration for the State of Alaska from 1979 to 2017 National Park Service (ver. 6.0, January 2024) Burned Area Reflectance Classification assessment Fire Occurrence Dataset Point Locations (ver. 6.0, January 2024) Provisional Initial Assessment Burned Areas Boundaries (ver. 6.0, January 2024) Monitoring Trends in Burn Severity Thematic Burn Severity Mosaic for 2013 (ver. 5.0, August 2023) Landsat Burned Area Products Data Release - Landsat 5 TM products Monitoring Trends in Burn Severity (ver. 7.0, January 2024) National Park Service (ver. 6.0, January 2024) Burned Area Reflectance Classification assessment Fire Occurrence Dataset Point Locations (ver. 6.0, January 2024) Provisional Initial Assessment Burned Areas Boundaries (ver. 6.0, January 2024) Gridded 20km Daily Reference Evapotranspiration for the State of Alaska from 1979 to 2017