Skip to main content
Advanced Search

Filters: Date Range: {"choice":"month"} (X) > Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/WRET/CMS_Themes/CASC_CMS_Themes"} (X)

Folders: ROOT > ScienceBase Catalog > LC MAP - Landscape Conservation Management and Analysis Portal ( Show direct descendants )

9 results (41ms)   

View Results as: JSON ATOM CSV
thumbnail
Global climate change and sea-level rise will have profound effects on estuarine fish, shellfish and wildlife populations and their habitats. Our ability to manage sustainable fish, shellfish and other wildlife populations in the future will be seriously compromised unless we have a basic understanding of the coming changes and use this to develop mitigation and adaptation measures. The overall objective of this multi-agency research is to develop the baseline climatic and biological data, models, and tools to predict the cumulative impact of climate change on habitats and ecosystem services in a series of coastal estuaries of the Pacific Northwest. In collaboration with other federal, state, and non-governmental...
thumbnail
A large portion of the U.S. population lives in coastal areas along the Atlantic and Gulf coasts and the Caribbean; however, our coasts are also home to many fish, wildlife, and plant species that are important for recreation, tourism, local economies, biodiversity, and healthy coastal ecosystems. Coastal habitats also provide protective ecosystem services to human communities, which are increasingly at risk to storms and sea level rise under future climate change. Understanding how climate change will impact natural and human communities is a crucial part of decision making and management related to the protection of our coasts. In a collaborative project between the North Atlantic Landscape Conservation Cooperative...
thumbnail
As glaciers melt from climate change, their contents – namely, large quantities of freshwater, sediment, and nutrients – are slowly released into coastal ecosystems. This project addressed the impacts of melting glaciers on coastal ecosystems in the Copper River region of the Gulf of Alaska, which is home to several commercially important fisheries. Researchers examined how glacial melting is altering the amount and timing of freshwater that enters the Gulf of Alaska from the Copper River. They also investigated the source and amount of two nutrients, iron and nitrate, dissolved in the water. As a complementary piece of the study, researchers tested the relationship between nutrient levels, plankton populations,...
thumbnail
Researchers from North Carolina State University and the USGS integrated models of urbanization and vegetation dynamics with the regional climate models to predict vegetation dynamics and assess how landscape change could impact priority species, including North American land birds. This integrated ensemble of models can be used to predict locations where responses to climate change are most likely to occur, expressing results in terms of species persistence to help resource managers understand the long-term sustainability of bird populations.
thumbnail
This project produced long simulations (multi-decadal to multi-century in scale) of past, present, and future regional climate at a grid spacing of 50 kilometers (km) over North America and at a grid spacing of 15 km over western and eastern North America. These model runs were the first attempt to achieve coordinated, high-resolution downscaling with such wide geographic and temporal coverage. The objectives of this project were to (1) understand the nature of climate change and variability, (2) quantify the climate-driven responses and feedbacks of terrestrial and aquatic ecosystems, wildfire, the hydrologic cycle, and alpine glaciers, and (3) provide climate information in a form that is useful to a wide range...
thumbnail
The Southeastern United States spans a broad range of physiographic settings and maintains exceptionally high levels of faunal diversity. Unfortunately, many of these ecosystems are increasingly under threat due to rapid human development, and management agencies are increasingly aware of the potential effects that climate change will have on these ecosystems. Natural resource managers and conservation planners can be effective at preserving ecosystems in the face of these stressors only if they can adapt current conservation efforts to increase the overall resilience of the system. Climate change, in particular, challenges many of the basic assumptions used by conservation planners and managers. Previous conservation...
thumbnail
Human impacts occurring throughout the DOI Northeast Climate Science Center, including urbanization, agriculture, and dams, have multiple effects on streams in the region which support economically valuable stream fishes. Changes in climate are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing stream water temperatures. To manage streams for current impacts and future changes, managers need region-wide information for decision-making and developing proactive management strategies. Our project met that need by integrating results of a current condition assessment of stream habitats based on fish response to human land use, water quality impairment,...
thumbnail
The USGS and South Atlantic LCC worked with stakeholders and managers across the Southeast to identify and assess landscape-level strategies for conserving multiple species. These strategies incorporated predictions from downscaled climate models, sea level rise, and changes to aquatic and terrestrial habitats.
thumbnail
The Southeastern United States spans a broad range of physiographic settings and maintains exceptionally high levels of faunal diversity. Unfortunately, many of these ecosystems are increasingly under threat due to rapid human development, and management agencies are increasingly aware of the potential effects that climate change will have on these ecosystems. Natural resource managers and conservation planners can be effective at preserving ecosystems in the face of these stressors only if they can adapt current conservation efforts to increase the overall resilience of the system. Climate change, in particular, challenges many of the basic assumptions used by conservation planners and managers. Previous conservation...


    map background search result map search result map Impacts of Climate Change and Melting Glaciers on Coastal Ecosystems in the Gulf of Alaska Predicting Climate Change Threats to Key Estuarine Habitats and Ecosystem Services in the Pacific Northwest Downscaled Climate Change Modeling for the Conterminous United States (National Assessment) FishTail: A Tool to Inform Conservation of Stream Fish Habitats in the Northeast SERAP: Decision Support for Stakeholders and Managers SERAP:  Modeling of Global and Land Use Change Impacts Southeast Regional Assessment Project (SERAP): Assessing Global Change Impacts on Natural and Human Systems in the Southeast SERAP:  Assessment of Climate and Land Use Change Impacts on Terrestrial Species Identifying Critical Thresholds and Tipping Points for Priority Coastal Species in a Changing Future Predicting Climate Change Threats to Key Estuarine Habitats and Ecosystem Services in the Pacific Northwest Impacts of Climate Change and Melting Glaciers on Coastal Ecosystems in the Gulf of Alaska SERAP: Decision Support for Stakeholders and Managers Southeast Regional Assessment Project (SERAP): Assessing Global Change Impacts on Natural and Human Systems in the Southeast SERAP:  Assessment of Climate and Land Use Change Impacts on Terrestrial Species SERAP:  Modeling of Global and Land Use Change Impacts FishTail: A Tool to Inform Conservation of Stream Fish Habitats in the Northeast Identifying Critical Thresholds and Tipping Points for Priority Coastal Species in a Changing Future Downscaled Climate Change Modeling for the Conterminous United States (National Assessment)