Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Alaska CASC > FY 2011 Projects > Understanding the Impacts of Permafrost Change: Providing Input into the Alaska Integrated Ecosystem Model > Approved Products ( Show all descendants )

6 results (31ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Alaska CASC
____FY 2011 Projects
_____Understanding the Impacts of Permafrost Change: Providing Input into the Alaska Integrated Ecosystem Model
______Approved Products
View Results as: JSON ATOM CSV
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/gcb.12875/abstract): Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH 4) and carbon dioxide (CO 2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large-scale controls of anaerobic CO 2 and CH 4 production and compare the relative importance...
Abstract: To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g-1 d-1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g-1 d-1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g-1 d-1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g-1 d-1), but net reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances...
Abstract (from http://www.nature.com/nature/journal/v521/n7551/full/nature14238.html): Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere1. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils2, 3, 4 and a rapid shift in functional gene composition during short-term thaw experiments3. However, the fate of permafrost carbon depends on climatic,...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2014JG002683/abstract): Changes in vegetation and soil properties following permafrost degradation and thermokarst development in peatlands may cause changes in net carbon storage. To better understand these dynamics, we established three sites in Alaska that vary in permafrost regime, including a black spruce peat plateau forest with stable permafrost, an internal collapse scar bog formed as a result of thermokarst, and a rich fen without permafrost. Measurements include year-round eddy covariance estimates of carbon dioxide (CO2 ), water, and energy fluxes, associated environmental variables, and methane (CH4 ) fluxes at the collapse scar bog. The ecosystems...
Abstract (from http://link.springer.com/article/10.1007%2Fs10533-015-0168-2): Quantifying rates of microbial carbon transformation in peatlands is essential for gaining mechanistic understanding of the factors that influence methane emissions from these systems, and for predicting how emissions will respond to climate change and other disturbances. In this study, we used porewater stable isotopes collected from both the edge and center of a thermokarst bog in Interior Alaska to estimate in situ microbial reaction rates. We expected that near the edge of the thaw feature, actively thawing permafrost and greater abundance of sedges would increase carbon, oxygen and nutrient availability, enabling faster microbial...
Abstract (from Microbiome): Background Winter carbon loss in northern ecosystems is estimated to be greater than the average growing season carbon uptake and is primarily driven by microbial decomposers. Viruses modulate microbial carbon cycling via induced mortality and metabolic controls, but it is unknown whether viruses are active under winter conditions (anoxic and sub-freezing temperatures). Results We used stable isotope probing (SIP) targeted metagenomics to reveal the genomic potential of active soil microbial populations under simulated winter conditions, with an emphasis on viruses and virus-host dynamics. Arctic peat soils from the Bonanza Creek Long-Term Ecological Research site in Alaska were incubated...
Categories: Publication; Types: Citation