Skip to main content
Advanced Search

Filters: Types: Citation (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Southwest CASC > FY 2012 Projects > Analysis of Downscaled Climate Simulations and Projections and Their Use in Decision Making for the Southwest > Approved Products ( Show all descendants )

12 results (10ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Southwest CASC
____FY 2012 Projects
_____Analysis of Downscaled Climate Simulations and Projections and Their Use in Decision Making for the Southwest
______Approved Products
View Results as: JSON ATOM CSV
Future changes in the number of dry days per year can either reinforce or counteract projected increases in daily precipitation intensity as the climate warms. We analyze climate model projected changes in the number of dry days using 28 coupled global climate models from the Coupled Model Intercomparison Project, version 5 (CMIP5). We find that the Mediterranean Sea region, parts of Central and South America, and western Indonesia could experience up to 30 more dry days per year by the end of this century. We illustrate how changes in the number of dry days and the precipitation intensity on precipitating days combine to produce changes in annual precipitation, and show that over much of the subtropics the change...
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-14-0236.1): Global climate model (GCM) output typically needs to be bias corrected before it can be used for climate change impact studies. Three existing bias correction methods, and a new one developed here, are applied to daily maximum temperature and precipitation from 21 GCMs to investigate how different methods alter the climate change signal of the GCM. The quantile mapping (QM) and cumulative distribution function transform (CDF-t) bias correction methods can significantly alter the GCM’s mean climate change signal, with differences of up to 2°C and 30% points for monthly mean temperature and precipitation, respectively. Equidistant quantile...
As the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens the present-day form, function, and viability of communities, infrastructure, and ecosystems. Determining the timing and nature of these tipping points is essential for effective climate adaptation planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to identify potential climate change-related...
Categories: Publication; Types: Citation
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-15-0199.1): Future snowfall and snowpack changes over the mountains of Southern California are projected using a new hybrid dynamical–statistical framework. Output from all general circulation models (GCMs) in phase 5 of the Coupled Model Intercomparison Project archive is downscaled to 2-km resolution over the region. Variables pertaining to snow are analyzed for the middle (2041–60) and end (2081–2100) of the twenty-first century under two representative concentration pathway (RCP) scenarios: RCP8.5 (business as usual) and RCP2.6 (mitigation). These four sets of projections are compared with a baseline reconstruction of climate from 1981 to 2000....
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-14-0082.1): A new technique for statistically downscaling climate model simulations of daily temperature and precipitation is introduced and demonstrated over the western United States. The localized constructed analogs (LOCA) method produces downscaled estimates suitable for hydrological simulations using a multiscale spatial matching scheme to pick appropriate analog days from observations. First, a pool of candidate observed analog days is chosen by matching the model field to be downscaled to observed days over the region that is positively correlated with the point being downscaled, which leads to a natural independence of the downscaling results...
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-14-00196.1): In this study (Part I), the mid-twenty-first-century surface air temperature increase in the entire CMIP5 ensemble is downscaled to very high resolution (2 km) over the Los Angeles region, using a new hybrid dynamical–statistical technique. This technique combines the ability of dynamical downscaling to capture finescale dynamics with the computational savings of a statistical model to downscale multiple GCMs. First, dynamical downscaling is applied to five GCMs. Guided by an understanding of the underlying local dynamics, a simple statistical model is built relating the GCM input and the dynamically downscaled output. This statistical...
Abstract (from http://link.springer.com/article/10.1007%2Fs00382-012-1337-9): Sixteen global general circulation models were used to develop probabilistic projections of temperature (T) and precipitation (P) changes over California by the 2060s. The global models were downscaled with two statistical techniques and three nested dynamical regional climate models, although not all global models were downscaled with all techniques. Both monthly and daily timescale changes in T and P are addressed, the latter being important for a range of applications in energy use, water management, and agriculture. The T changes tend to agree more across downscaling techniques than the P changes. Year-to-year natural internal climate...
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-14-00197.1): Using the hybrid downscaling technique developed in part I of this study, temperature changes relative to a baseline period (1981–2000) in the greater Los Angeles region are downscaled for two future time slices: midcentury (2041–60) and end of century (2081–2100). Two representative concentration pathways (RCPs) are considered, corresponding to greenhouse gas emission reductions over coming decades (RCP2.6) and to continued twenty-first-century emissions increases (RCP8.5). All available global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are downscaled to provide likelihood and uncertainty estimates....
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-13-00126.1): We describe the expansion of a publicly available archive of downscaled climate and hydrology projections for the United States. Those studying or planning to adapt to future climate impacts demand downscaled climate model output for local or regional use. The archive we describe attempts to fulfill this need by providing data in several formats, selectable to meet user needs. Our archive has served as a resource for climate impacts modelers, water managers, educators, and others. Over 1,400 individuals have transferred more than 50 TB of data from the archive. In response to user demands, the archive has expanded from monthly downscaled...
Abstract (from http://link.springer.com/article/10.1007/s00382-015-2845-1): Humidity is important to climate impacts in hydrology, agriculture, ecology, energy demand, and human health and comfort. Nonetheless humidity is not available in some widely-used archives of statistically downscaled climate projections for the western U.S. In this work the Localized Constructed Analogs (LOCA) statistical downscaling method is used to downscale specific humidity to a 1°/16° grid over the conterminous U.S. and the results compared to observations. LOCA reproduces observed monthly climatological values with a mean error of ~0.5 % and RMS error of ~2 %. Extreme (1-day in 1- and 20-years) maximum values (relevant to human health...
Abstract (from ScienceDirect): Incorporating coastal ecosystems in climate adaptation planning is needed to maintain the well-being of both natural and human systems. Our vulnerability study uses a multidisciplinary approach to evaluate climate change vulnerability of an urbanized coastal community that could serve as a model approach for communities worldwide, particularly in similar Mediterranean climates. We synthesize projected changes in climate, coastal erosion and flooding, watershed runoff and impacts to two important coastal ecosystems, sandy beaches and coastal salt marshes. Using downscaled climate models along with other regional models, we find that temperature, extreme heat events, and sea level are...