Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > Pacific Coastal and Marine Science Center > Coastal Storm Modeling System (CoSMoS) ( Show all descendants )

8 results (8ms)   

View Results as: JSON ATOM CSV
thumbnail
First Release: November 2018 The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge....
thumbnail
The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS 3.2 for Northern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Northern California covers the coastline from Golden Gate Bridge to the California-Oregon state border.
thumbnail
First release: Nov 2015 Revised: Jan 2016 (ver. 1a) Revised: Oct 2016 (ver. 1b) Revised: Jan 2017 (ver. 1c) Revised: Feb 2017 (ver. 1d) Revised: Apr 2017 (ver. 1e) Revised: Jun 2017 (ver. 1f) Revised: May 2018 (ver. 1g) The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical...
This data release provides flooding extent polygons and flood depth rasters (geotiffs) based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian, Mariana, and American Samoan Islands. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10 square meter resolution along these islands’ coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level...
Categories: Data; Tags: CMHRP, Climate Change, Climatology, Coastal Processes, Coastal and Marine Hazards and Resources Program, All tags...
thumbnail
As part of the Coastal Storm Modeling System (CoSMoS), time series of hindcast, historical, and 21st-century nearshore wave parameters (wave height, period, and direction) were simulated for the southern California coast from Point Conception to the Mexican border. The hindcast (1980-2010) time series represents reanalysis-forced offshore waves propagated to the nearshore, whereas the historical (1976-2005) and 21st-century (2012-2100) time series represent global climate model-forced offshore waves propagated to the nearshore. Changes in deep-water wave conditions directly regulate the energy driving coastal processes. However, a number of physical processes, for example, refraction on continental shelves and/or...
thumbnail
Coastal groundwater levels (heads) can increase with sea level rise (SLR) where shallow groundwater floats on underlying seawater. In some areas coastal groundwater could rise almost as much as SLR, but where rising groundwater intersects surface drainage features, the increase will be less. Numerical modeling can provide insight into coastal areas that may be more or less vulnerable to hazards associated with SLR-driven groundwater shoaling (moving closer to the ground surface) and emergence (flooding the ground surface), providing coastal planners with critical information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources in complex coastal...
Categories: Data
thumbnail
To support Coastal Storm Modeling System (CoSMoS) in the San Francisco Bay (v2.1), time series of historical and 21st-century near-surface wind fields (eastward and northward wind arrays) were simulated throughout the Bay. While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling projects, such as CoSMoS. Short-duration high wind speeds, on the order of hours, are of key importance in wave and subsequent coastal flood modeling. Here we present temporally-downscaled wind data for historical (1975-2004) and projected (2010-2100) time periods, developed using a method similar to constructed...
thumbnail
This dataset contains projections of shoreline change and uncertainty bands across California for future scenarios of sea-level rise (SLR). Projections were made using the Coastal Storm Modeling System - Coastal One-line Assimilated Simulation Tool (CoSMoS-COAST), a numerical model run in an ensemble forced with global-to-local nested wave models and assimilated with satellite-derived shoreline (SDS) observations across the state. Scenarios include 25, 50, 75, 100, 125, 150, 175, 200, 250, 300 and 500 centimeters (cm) of SLR by the year 2100. Output for SLR of 0 cm is also included, reflective of conditions in 2000.


    map background search result map search result map Nearshore waves in southern California: hindcast, and modeled historical and 21st-century projected time series Coastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2 Near-surface wind fields for San Francisco Bay--historical and 21st-century projected time series Coastal Storm Modeling System (CoSMoS) for Central California, v3.1 Coastal Storm Modeling System (CoSMoS) for Northern California 3.2 Projections of shoreline change for California due to 21st century sea-level rise Coastal Storm Modeling System (CoSMoS) for Northern California 3.2 Near-surface wind fields for San Francisco Bay--historical and 21st-century projected time series Coastal Storm Modeling System (CoSMoS) for Central California, v3.1 Nearshore waves in southern California: hindcast, and modeled historical and 21st-century projected time series Coastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2 Projections of shoreline change for California due to 21st century sea-level rise