Skip to main content
Advanced Search

Filters: partyWithName: Bruce K Wylie (X)

Folders: ROOT > ScienceBase Catalog > LandCarbon > Projects > Alaska permafrost and inland waters > Alaska permafrost characterization ( Show all descendants )

2 results (48ms)   

View Results as: JSON ATOM CSV
thumbnail
This product provides regional estimates of specific wetland types (bog and fen) in Alaska. Available wetland types mapped by the National Wetlands Inventory (NWI) program were re-classed into bog, fen, and other. NWI mapping of wetlands was only done for a portion of the area so a decision tree mapping algorithm was then developed to estimate bog, fen, and other across the state of Alaska using remote sensing and GIS spatial data sets as inputs. This data was used and presented in two chapters on the USGS Alaska LandCarbon Report.
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...


    map background search result map search result map Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2014 Alaska LandCarbon Wetland Distribution Map Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2014 Alaska LandCarbon Wetland Distribution Map