Skip to main content
Advanced Search

Filters: Categories: Map (X) > Types: Downloadable (X)

30 results (39ms)   

View Results as: JSON ATOM CSV
thumbnail
This raster depicts the percentage of lithological the hydraulic conductivity (in micrometers per second) of surface or near surface geology. We derived these rasters by calculating the average conductivity for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater...
thumbnail
NOTE: A newer online map viewer for the Protected Areas Database of the United States (PAD-US) is available: https://maps.usgs.gov/padusdataexplorer The Protected Areas Database of the United States (PAD-US) is a geodatabase that illustrates and describes public land ownership, management and conservation lands nationally, including voluntarily provided privately protected areas. The lands included in PAD-US are assigned conservation measures that qualify their intent to manage lands for the preservation of biological diversity and to other natural, recreational and cultural uses; managed for these purposes through legal or other effective means. The geodatabase includes: 1) Geographic boundaries of public...
thumbnail
Map of the alluvial valley of the Mississippi River from the head of St. Francis Basin to the Gulf of Mexico, showing lands subject to overflow, location of levees and trans-alluvial profiles Downloaded from: https://www.digitalcommonwealth.org/search/commonwealth:7h14b0450 Edited (to correct position of panels) and georeferenced by Yvonne Allen (USFWS) to geographic NAD1927 using ArcGIS , 3rd order polynomial and 80 ground control points using lat lon grid only. RMS=0.00408 SERVICE DEFINITION FILE ONLY For Geographic NAD 27 geotiff see: https://www.sciencebase.gov/catalog/item/58f66491e4b0bd52222f7821
thumbnail
This set of maps shows relative habitat diversity (complexity) as it relates to the number of different dominant cover types are found in 1 hectare, and the number of structural types found in 1 hectare. Component layers are included, as are layers of channel boundaries, reaches, and bottomland kilometers.
thumbnail
This set of maps shows relative habitat quality for snakes that prefer the rocky outside margin of the bottomland area. Component layers (type and count of cover types, distance to bottomland boundary and distance to permanent water) are included, as are associated layers of channel boundaries, reaches, and bottomland kilometers.
thumbnail
This collection of maps shows relative habitat quality for a suite of species that use riparian overstory habitats. Component layers include: tree patch size, presence and complexity of riparian understory, and abundance of tamarisk. Associated layers such as river channels at high flow and bottomland reaches are included for reference.
thumbnail
Current national data resources for GAP include three primary data sets – land cover, protected areas, and species. Land Cover: The GAP/LANDFIRE National Terrestrial Ecosystems data, based on the NatureServe Ecological Systems Classification, are the foundation of the most detailed, consistent map of vegetation available for the United States. These data facilitate the planning and management for biological diversity on a regional and national scale. Learn more about GAP land cover data here: https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/land-cover Protected Areas: The Protected Areas Database of the United States (PAD-US) is a national geodatabase, created by USGS GAP,...
thumbnail
This data layer summarizes ecological systems and land cover classes described in state-level and national-level maps as Broadly Defined Habitats for groups of species of conservation concern. Each grid cell in the raster is assigned a Condition Index value based on desired condition metrics using ancillary datasets and a decision tree approach for each assessed habitat. Grid cells are also assigned bar code descriptors indicating which metrics contributed to the Condition Index score for that cell. This layer also contains information about potential habitats based on the LANDFIRE Biophysical Settings data layer. This layer was developed to support the next iteration of the Conservation Blueprint developed by the...
Portal which contains modeled projections of storm surge from coastal storms along the East and Gulf Coasts and the resulting physical,economic, and social losses. Developed in collabortion with FEMA. Contains SLOSH storm surge data and HAZUS loss data by census block.
Categories: Data, Map, Web Site; Types: Application, Downloadable
thumbnail
This collection of maps shows fluvial geomorphic features of the Colorado River bottomland including river channel boundaries at high flow (31,300 cubic ft/sec on 06/28/2011 at the Cisco gage) and at lower flow (3,410 cubic ft/sec on 09/06/2010 at the Cisco gage). Also shown is the bottomland boundary delineating the currently active fluvial surface; the bottomland is subdivided by both reaches and bottomland kilometers for reference. Centerlines for the bottomland and 2010 river channel are included, also.
thumbnail
This set of maps shows relative habitat quality for species that prefer open areas. Component layers (herbacoeus areas, distance to high water) are included, as are associated layers of channel boundaries, reaches, and bottomland kilometers.
thumbnail
An extreme flood in 2016 caused widespread culvert blockages and road failures across northern Wisconsin, including extensive damage along steep tributaries and ravines in the Marengo River watershed. Along with the flooding, there were fluvial erosion hazards (FEH) associated with a large amount of erosion in headwater areas. Of special concern were FEHs associated with gullying, loss of wetland storage, and valley-side mass wasting. In 2020, a pilot study was begun to map and classify ephemeral and perennial streams and wetlands in terms of their susceptibility to fluvial erosion hazards. This study combines rapid geomorphic field assessments of river corridor erosion and coupled sediment and debris delivery with...
thumbnail
This raster depicts the percentage of lithological magnesium oxide (MgO) content in surface or near surface geology. We derived these rasters by calculating the average percent MgO content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from...
thumbnail
This raster depicts the percentage of lithological the compressive strength, measured as uniaxial compressive strength (in megaPascals, MPa) of surface or near surface geology. We derived these rasters by calculating the average strength for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map...
thumbnail
This raster depicts the percentage of lithological aluminum oxide (Al2O3) content in surface or near surface geology. We derived these rasters by calculating the average percent Al2O3 content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from...
thumbnail
This set of maps shows relative habitat quality for riparian understory species, both with and without a penalty applied for abundant tamarisk. Component layers are included, as are complementary layers of channel boundaries, reaches, and bottomland kilometers.
thumbnail
This raster depicts the percentage of lithological sulfur (S) content in surface or near surface geology. We derived these rasters by calculating the average percent S content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from Soller et al....
thumbnail
This raster depicts the percentage of lithological nitrogen (N) content in surface or near surface geology. We derived these rasters by calculating the average percent N content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from Soller et...
thumbnail
Map of the alluvial valley of the Mississippi River from the head of St. Francis Basin to the Gulf of Mexico, showing lands subject to overflow, location of levees and trans-alluvial profiles Downloaded from: https://www.digitalcommonwealth.org/search/commonwealth:7h14b0450 Edited (to correct position of panels) and georeferenced by Yvonne Allen (USFWS) to geographic NAD1927 using ArcGIS , 3rd order polynomial and 80 ground control points using lat lon grid. SERVICE DEFINITION FILE ONLY For geographic NAD27 geotiff see: https://www.sciencebase.gov/catalog/item/58f66491e4b0bd52222f7821


map background search result map search result map GAP Protected Areas Database of the United States (PAD-US) Viewer Current National Data Resources for the Gap Analysis Project Riparian Overstory Model and Component Layers Riparian Understory Model and Component Layers General Diversity Model and Component Layers Open Land Species Model and Component Layers Rocky Fringe Snakes Model and Component Layers Sites and Basin Shapefiles for GLRI Toxic Contaminant Loading Project Fluvial Geomorphic Features Geochemical Characteristics of the Conterminous United States: % MgO Geophysical Characteristics of the Conterminous United States: Uniaxial Compressive Strength (MPa) Geophysical Characteristics of the Conterminous United States: Hydraulic Conductivity (µm/s) Geochemical Characteristics of the Conterminous United States: % Sulfur Geochemical Characteristics of the Conterminous United States: % Al2O3 Geochemical Characteristics of the Conterminous United States: % Nitrogen Lower Mississippi River Circa 1899 Lower Mississippi River Historical Floodplain - circa 1899 Arkansas Broadly Defined Habitats Fluvial Erosion Hazard Geospatial Network from the Marengo River Watershed, Ashland County, Wisconsin Fluvial Erosion Hazard Geospatial Network from the Marengo River Watershed, Ashland County, Wisconsin General Diversity Model and Component Layers Open Land Species Model and Component Layers Rocky Fringe Snakes Model and Component Layers Riparian Understory Model and Component Layers Riparian Overstory Model and Component Layers Fluvial Geomorphic Features Arkansas Broadly Defined Habitats Lower Mississippi River Historical Floodplain - circa 1899 Lower Mississippi River Circa 1899 Sites and Basin Shapefiles for GLRI Toxic Contaminant Loading Project Geochemical Characteristics of the Conterminous United States: % MgO Geophysical Characteristics of the Conterminous United States: Uniaxial Compressive Strength (MPa) Geophysical Characteristics of the Conterminous United States: Hydraulic Conductivity (µm/s) Geochemical Characteristics of the Conterminous United States: % Sulfur Geochemical Characteristics of the Conterminous United States: % Al2O3 Geochemical Characteristics of the Conterminous United States: % Nitrogen GAP Protected Areas Database of the United States (PAD-US) Viewer Current National Data Resources for the Gap Analysis Project