Skip to main content
Advanced Search

Filters: Categories: Project (X) > partyWithName: LCC Network Data Steward (X) > partyWithName: Arctic Landscape Conservation Cooperative (X)

52 results (55ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Information on the nature and distribution of permafrost is critical to assessing the response of Arctic ecosystems to climate change, because thawing permafrost under a warming climate will cause thaw settlement and affect micro-topography, surface water redistribution and groundwater movement, soil carbon balance, trace gas emissions, vegetation changes, and habitat use. While a small-scale regional permafrost map is available, as well as information from numerous site-specific large-scale mapping projects, landscape-level mapping of permafrost characteristics is needed for regional modeling and climate impact assessments. The project addresses this need by: (1) compiling existing soil/permafrost data from available...
The Integrated Ecosystem Model (IEM) for Alaska and Northwest Canada Project integrated existing models of vegetation, disturbance, and permafrost into one complete ecosystem model for the state of Alaska and Northwest Canada.The final synchronized model will integrate existing climate, vegetation, disturbance, hydrology, and permafrost models to improve understanding of potential landscape, habitat and ecosystem change. The project’s (September 1, 2011 through August 31, 2016) primary goal was to develop the IEM modeling framework to integrate the driving components for and the interactions among disturbance regimes, permafrost dynamics, hydrology, and vegetation succession/migration for Alaska and Northwest Canada....
thumbnail
Contemporary observations suggest that water may disappear entirely from portions of some North Slope stream-beds during periods of drought or low flow. Climate models project even drier summers in the future. This could pose a problem for migrating fish that must be able to move back and forth from breeding and summer feeding areas to scarce overwintering sites. This work uses the best available long-term hydrologic data set for the North Slope (in the upper Kuparuk River watershed) to develop a model to assess the vulnerability of stream systems to periodic drought, and the vulnerability of migrating fish to a loss of stream connectivity.
TheNorthSlopeofAlaskaliesonthenorthsideofBrooksRangeandincludesextensivecoastlinesalongtheChukchiSeaandBeaufortSea.TheseshorelinesarefundamentallydifferentfrommostofthecoastlineintheUSastheyareconsolidatedbypermafrostandsubjecttoperiglacialprocesses,includingcryogenicprocessesonshoreandnearshoreseasonalpackiceformation.ThesecoastsarehighlydynamicandundergoingsomeofthefastestretreatratesinNorthAmerica(GibbsandRichmondn.d.).Proposedoffshoreoildevelopmentactivitiesinthe ChukchiSeacoastandexistingoffshoredrillingislandsalongtheBeaufortSeacoastposeenvironmentalrisksforthesecoasts.Environmentalconcernsincludeincreasedairandseatraffic,accidentaloilspills,andpotentialportdevelopments.BOEMrequiresup-­‐to-­‐date,digitalmappingthatcanbeusedtosystematicallyassesstheseenvironmentalrisks.TheSh...
thumbnail
The Anaktuvuk River Fire was the largest, highest-severity wildfire recorded on Alaska’s North Slope since records began in 1956. The 2007 Anaktuvuk River Fire was an order of magnitude larger than the average fire size in the historic record for northern Alaska and indices of severity were substantially higher than for other recorded tundra burns. An interdisciplinary team assessed fire effects including burn severity, potential plant community shifts, and effects on permafrost and active layers. Observers monumented, photographed, and measured 24 burned and 17 unburned reference transects, starting the year after the fire, and spanning the range of vegetation types and burn severities.
thumbnail
The purpose of this project is to provide better information to industry and regulatory agencies regarding the likely locations of polar bear dens. This project integrates snow physics, high-resolution digital elevation data, and bear biology to produce more refined and accurate maps predicting suitable polar bear den habitat than are currently available. The work consists of data gathering, consultation between snow and bear scientists, modeling, and sensitivity studies to understand the various factors influencing den location and evolution along the Beaufort Coast.The proposed work is intended to refine current methods of identifying polar bear denning sites by incorporating higher-resolution topographic data...
thumbnail
The Wildlife Conservation Society will assess the climate change vulnerability of bird species that regularly breed in substantial populations in Alaska using the NatureServe Climate Change Vulnerability Index (CCVI) tool. Initial work will focus on breeding birds in Arctic Alaska including shorebirds, waterfowl and waterbird species (loons, gulls, terns, jaegers), and land bird species (passerines, raptors, ptarmigan).
thumbnail
Information on the nature and distribution of permafrost is critical to assessing the response of Arctic ecosystems to climate change, because thawing permafrost under a warming climate will cause thaw settlement and affect micro-topography, surface water redistribution and groundwater movement, soil carbon balance, trace gas emissions, vegetation changes, and habitat use. While a small-scale regional permafrost map is available, as well as information from numerous site-specific large-scale mapping projects, landscape-level mapping of permafrost characteristics is needed for regional modeling and climate impact assessments. The project addresses this need by: (1) compiling existing soil/permafrost data from available...
thumbnail
The Bureau of Ocean Energy Management (BOEM) is supporting a field effort in support of a ShoreZone mapping project along the Chukchi and Beaufort coasts. Funds from the LCC will allow for the inclusion of three additional ShoreStations. Researchers will conduct ground surveys to get detailed physical and biological measurements throughout the various and often unique Chukchi and Beaufort coastal habitats. Sediment samples will be archived from each shore station for hydrocarbon analyses in the event of a local or regional oil spill. The Arctic ShoreZone Shore Stations will be added to the statewide database and made available online to the public NOAA website.
thumbnail
Hydrologic data for the Alaska Arctic are sparse, and fewer still are long-term (> 10 year) datasets. This lack of baseline information hinders our ability to assess long-term alterations in streamflow due to changing climate. The Arctic LCC is provided stop-gap funding to continue this long time series hydrological data sets in the Kuparuk and Putuligayuk watersheds.
thumbnail
To elucidate these potential “bottom up” effects of climate changes to Arctic ungulates and evaluate the trophic mismatch hypothesis, the Arctic Landscape Conservation Cooperative (ALCC), the Bureau of Land Management (BLM), the U.S. Geological Survey (USGS), Teck, Inc., and the National Park Service provided funding in 2012-14 to incorporate the calving and summer range of the Western Arctic caribou herd (WAH) into an ongoing inter-agency research and monitoring effort to examine the influences of climate change on the nutrient dynamics of caribou forages. This work is leveraging existing projects on the North Slope of Alaska that are primarily funded through the USGS Changing Arctic Ecosystems Initiative. Field...
thumbnail
Our overarching questions are: (1) How much of the river water and water-borne constituents (i.e. sediment, nutrients, organic matter) from the Jago, Okpilak and Hulahula rivers are coming from glacier melt? (2) How do inputs from these rivers affect the downstream ecosystems? (3) How will loss of glaciers affect these ecosystems? The study will help elucidate how inputs from glacier-dominated arctic rivers differ from unglaciated rivers, through a combination of ground work, boat work, and remote sensing. In Phase One of this study, we intend to explore the relationship between glaciers and coastal ecosystems. Our goal in this phase-one study is not to answer these questions conclusively but rather improve our...
thumbnail
More information is needed about species composition, abundance, or distribution of the microfauna and meiofauna living within the interstitial spaces of the littoral zones along the Beaufort Sea coast. Shorebirds depend on meiofauna for food for pre-migratory fattening and these organisms make important contributions to bioremediation of oil spills.The information obtained from this jointly-funded research can contribute to development of mitigation measures and strategies to reduce potential impacts from post-lease exploration and development. This information need extends to the lower trophic levels forming the base of these complex food webs and the biochemistry that influences these relationships. Their contributions...
thumbnail
The USGS and Arctic National Wildlife Refuge Staff operate and maintain a streamgage at Hulahula River near Kaktovik, Alaska. Data from this station is necessary to complement glacier mass-balance studies and provide information necessary to project stream flow regimes under various scenarios of climate change. This project includes operation, acquiring real-time data, analysis of the data, and internet access. The gauge continues to operate as of 2017.
thumbnail
LCC funding for this project helped maintain a network of hydrology monitoring sites in a representative watershed of the Arctic Coastal Plain. The work was conducted within the context of climate change and impending oil and gas activities in the region, the latter of which is the impetus for focusing on the Fish Creek watershed. The project included two monitoring components:1) Beaded Stream & Lake Hydrology Monitoring (dominant habitat type within the watershed): in 6 stream/lake complex watersheds (Redworm, Hannahbear, Blackfish, Crea, Oil, and Bills creeks), continuous water level and temperature (in lakes, streams, and confluences), discrete discharge measurements, and continuous water quality (specific conductivity,...
Support for the implementation of landscape conservation design through Alaska’s LCCs
thumbnail
Using a bioclimatic envelope approach, University of Alberta investigators project how the distribution and abundance of boreal forest birds across North America will respond to different scenarios of future climate-change. Investigation emphasis is on mapping and quantifying potential range expansions of boreal bird species into Arctic and subarctic regions across Alaska and Canada. The final products demonstrate a broad continental-scale overview of potential shifts in avian distribution.
This project uses previously collected ShoreZone imagery to map nearly 1,600 km of coastline between Wales and Kotzebue. With additional mapping supported by the Arctic LCC and National Park Service, this effort will complete the Kotzebue Sound shoreline, which will be included in the state-wide ShoreZone dataset. The complete ShoreZone dataset will be used to conduct a coastal hazards analysis and create maps that identify areas undergoing rapid coastal erosion and areas that are sensitive to inundation by storm surge and sea level rise.​
This project is focused on establishing a statewide framework to improve the hydrography mapping and stewardship in Alaska. This will be acheived through the creation of a statewide system to make digital mapping data updates accessible and affordable, and through the creation of a statewide hydrography mapping coordinator position to synchronize updates and guide hydrography mapping development. This framework will allow agencies and organizations to greatly improve their hydrography mapping data, as well as consume and uplift project level hydrography data that would not otherwise be incorporated.
thumbnail
Arctic wetlands, where millions of local and migratory birds nest, are composed of a mosaic of ice wedge polygons, non-patterned tundra, and large vegetated drained thaw lake basins. Regional climate projections suggest that evapotranspiration, rainfall, and snowfall will increase, making it difficult to predict how surface water distribution might change and how habitats for the invertebrate resources used by waterbirds will be impacted. This study will focus on evaluating how climate change will affect the invertebrate community, and whether the change in climate (through changes in hydrology and surface energy balance) could induce a trophic mismatch that might alter the growth and survival of shorebird young....


map background search result map search result map Mapping Suitable Snow Habitat for Polar Bear Denning Along the Beaufort Coast of Alaska Fish Creek Watershed Hydrology Monitoring Linking North Slope Climate, Hydrology, and Fish Migration Streamflow Monitoring on Upper Kuparuk and Putuligayuk Rivers (2010) Hydrologic Monitoring of Glacier-Influenced Watersheds (Hulahula Gage) Bringing Alaska's Freshwater Hydrography into the 21st Century Development and Application of an Integrated Ecosystem Model for Alaska Interdisciplinary Study of How Climate Change May Affect Wetland Habitats, Invertebrates and Shorebirds North Slope Coastal Imagery Initiative ShoreZone Program on the North Slope of Alaska Evaluating the 'Bottom Up' Effects of Changing Habitats: Climate Changes, Vegetative Phenology, and the Nutrient Dynamics of Ungulate Forages Climate Change Vulnerability of Migrating Bird Species Breeding in Arctic Alaska Integrating studies of glacier dynamics and estuarine chemistry in the context of landscape change in the Arctic Refuge Anaktuvuk River Fire Monitoring Modeling avifaunal responses to climate change in North America's boreal-Arctic transition zone Shorebirds and Invertebrate Distribution on Delta Mudflats along the Beaufort Sea Permafrost Database Development, Characterization, and Mapping for Northern Alaska Permafrost Database Development, Characterization, and Mapping for Northern Alaska Anaktuvuk River Fire Monitoring Mapping Suitable Snow Habitat for Polar Bear Denning Along the Beaufort Coast of Alaska Linking North Slope Climate, Hydrology, and Fish Migration Hydrologic Monitoring of Glacier-Influenced Watersheds (Hulahula Gage) Integrating studies of glacier dynamics and estuarine chemistry in the context of landscape change in the Arctic Refuge Fish Creek Watershed Hydrology Monitoring Shorebirds and Invertebrate Distribution on Delta Mudflats along the Beaufort Sea Streamflow Monitoring on Upper Kuparuk and Putuligayuk Rivers (2010) ShoreZone Program on the North Slope of Alaska Evaluating the 'Bottom Up' Effects of Changing Habitats: Climate Changes, Vegetative Phenology, and the Nutrient Dynamics of Ungulate Forages Interdisciplinary Study of How Climate Change May Affect Wetland Habitats, Invertebrates and Shorebirds Climate Change Vulnerability of Migrating Bird Species Breeding in Arctic Alaska Permafrost Database Development, Characterization, and Mapping for Northern Alaska Permafrost Database Development, Characterization, and Mapping for Northern Alaska North Slope Coastal Imagery Initiative Modeling avifaunal responses to climate change in North America's boreal-Arctic transition zone