Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/Project/FiscalYear"} (X) > Categories: Project (X)

1,621 results (19ms)   

Filters
View Results as: JSON ATOM CSV
thumbnail
The goal of this project was to inform implementation of the Greater Yellowstone Coordinating Committee (GYCC) Whitebark Pine (WBP) subcommittee’s “WBP Strategy” based on climate science and ecological forecasting. Project objectives were to: 1. Forecast ecosystem processes and WBP habitat suitability across the Greater Yellowstone Area (GYA) under alternative IPCC future scenarios; 2. Improve understanding of possible response to future climate by analyzing WBP/climate relationships in past millennia; 3. Develop WBP management alternatives; 4. Evaluate the alternatives under IPCC future scenarios in terms of WBP goals, ecosystem services, and costs of implementation; and 5. Draw recommendations for implementation...
thumbnail
Resource managers, policymakers, and scientists require tools to inform water resource management and planning. Information on hydrologic factors – such as streamflow, snowpack, and soil moisture – is important for understanding and predicting wildfire risk, flood activity, and agricultural and rangeland productivity, among others. Existing tools for modeling hydrologic conditions rely on information on temperature and precipitation. This project sought to evaluate different methods for downscaling global climate models – that is, taking information produced at a global scale and making it useable at a regional scale, in order to produce more accurate projections of temperature and precipitation for the Pacific...
thumbnail
In Alaska, recent research has identified particular areas of the state where both a lack of soil moisture and warming temperatures increase the likelihood of wildfire. While this is an important finding, this previous research did not take into account the important role that melting snow, ice, and frozen ground (permafrost) play in replenshing soil moisture in the spring and summer months. This project will address this gap in the characterization of fire risk using the newly developed monthly water balance model (MWBM). The MWBM takes into account rain, snow, snowmelt, glacier ice melt, and the permafrost layer to better calculate soil moisture replenishment and the amount of moisture that is lost to the atmosphere...
thumbnail
Alaska’s high-latitude, arctic landscape places it at the front lines of environmental change. Factors such as rising temperatures, altered precipitation patterns, and associated shifts in growing degree days, summer season length, extreme heat, and the timing of spring thaw and autumn frost are rapidly changing Alaska’s ecosystems and associated human systems. The ability of Alaska’s land managers and communities to predict these changes will profoundly affect their ability to adapt. The State of Alaska recognizes the scope and magnitude of these changes and has made it a priority to ensure anticipated change is incorporated into local and regional planning. This project will involve collaboration with agency...
thumbnail
The Northwest Climate Adaptation Science Center (NW CASC) organizes an annual Deep Dive into an emerging climate risk. The NW CASC convenes researchers, practitioners and students to assess the state of knowledge and practice associated with managing that risk. Each Deep Dive aims to facilitate community development of an Actionable Science Agenda that outlines knowledge gaps and research needs and identifies opportunities to advance adaptation by linking science and practice. Deep Dive topics include managing western Washington wildfire risk in a changing climate, managing climate-driven post-fire vegetation transitions, and managing climate change effects on stream drying in the Northwest. To learn more about...
thumbnail
The Gulf of Alaska is one of the most productive marine ecosystems on Earth, supporting salmon fisheries that alone provide nearly $1 billion per year in economic benefits to Southeast Alaska. Glaciers are central to many of the area’s natural processes and economic activities, but the rates of glacier loss in Alaska are among the highest on Earth, with a 26-36 percent reduction in total volume expected by the end of the century. This project brought together scientists and managers at a workshop to synthesize the impacts of glacier change on the region’s coastal ecosystems and to determine related research and monitoring needs. Collected knowledge shows that melting glaciers are expected to have cascading effects...
thumbnail
Throughout Alaska, land managers and rural communities are faced with developing climate adaptation strategies to prepare for changes in landscapes, ecosystems and terrestrial habitats and their associated resources and services. One of the greatest challenges for land use managers and stakeholders in Alaska is the discovery and accessibility of relevant scientific information and data. The effective dissemination and communication of science relies on improving access for stakeholders to discover research, management plans, and data within their geographic area of interest. To respond to this need, the Northwest Boreal Landscape Conservation Cooperative (NWBLCC) has launched the Northwest Boreal Science and Management...
thumbnail
Northeastern boreal forests are an important habitat type for many wildlife species, including migratory birds and moose. These animals play vital roles in the boreal forest ecosystem, are a source of pleasure for bird and wildlife watchers, and contribute to tourism revenue for many communities. However, moose and migratory birds are thought to be particularly vulnerable to the impacts of climate change. For example, in New York’s Adirondack Park system, five species of boreal birds have shown occupancy declines of 15% or more. Meanwhile, moose are threatened by winter ticks that thrive in warmer climates and spread disease. A 2018 New York Department of Environmental Conservation (NYDEC) report found that there...
thumbnail
Changing climate conditions such as increasing droughts, floods, and wildfires, hotter temperatures, declining snowpacks, and changes in the timing of seasonal events are already having an impact on wildlife and their habitats. In order to make forward-looking management decisions that consider ongoing and future projected changes in climate, managers require access to climate information that can be easily integrated into the planning process. Co-production, a process whereby scientists work closely with managers to identify and fill knowledge gaps, is an effective means of ensuring that science results will be directly useful to managers. Through a multi-phase project, researchers are implementing co-production...
thumbnail
Researchers with the North Central Climate Science Center have made substantial progress in assessing the impacts of climate and land use change on wildlife and ecosystems across the region. Building on this progress, researchers will work with stakeholders to identify adaptation strategies and inform resource management in the areas that will be most affected by changing conditions. There are several components of this project. First, researchers will use the Department of Interior “resource briefs” as a mechanism to communicate information to resource managers on climate and land use change and their impacts to resources. These briefs will support coordinated management of ecosystems that contain public, private,...
thumbnail
The Northern Glaciated Plains in the upper Midwest United States is a region where fishing generates millions of dollars a year for local and state economies. Maintaining these revenues requires the management of fish populations that are popular and accessible (e.g. boat ramps, public land access) to anglers. Fisheries throughout the world are currently undergoing unprecedented changes to water levels and habitat quality resulting from climate change. The consequences of climate change to Northern Glaciated Plains fisheries are unknown but pose an immediate challenge for resource managers as angler access and opportunities can be jeopardized when: a) boat ramps become inaccessible due to changing water levels,...
thumbnail
As a low-lying coastal nation, the Republic of the Marshall Islands is at the forefront of exposure to climate change impacts. The Republic of the Marshall Islands has a strong dependence on natural resources and biodiversity not only for food and income but also for culture and livelihood. However, these resources are threatened by rising sea levels and associated coastal hazards (storm surges, saltwater intrusion, erosion, etc.). High-quality data for atoll ‘ridge to reef’ (land and ocean) areas are needed to provide remote communities with the tools and strategies to make adaptation efforts before disasters occur. Although the Republic of the Marshall Islands’ National Strategic Plans recognize the need to...
thumbnail
Drought and wildfire pose enormous threats to the integrity of natural resources that land managers are charged with protecting. Recent observations and modeling forecasts indicate that these stressors will likely produce catastrophic ecosystem transformations, or abrupt changes in the condition of plants, wildlife, and their habitats, in regions across the country in coming decades. In this project, researchers will bring together land managers who have experienced various degrees of ecosystem transformation (from not yet experiencing any changes to seeing large changes across the lands they manage) to share their perspectives on how to mitigate large-scale changes in land condition. The team will conduct surveys...
thumbnail
Loko iʻa (Hawaiian fishponds) are an advanced, extensive form of aquaculture found nowhere else in the world. Loko iʻa practices are the result of over a thousand years of intergenerational knowledge, experimentation, and adaptation, and once produced over 2 million pounds of fish per year throughout the Hawaiian Islands. These fishponds provided a consistent and diverse supply of fish when ocean fishing was not possible or did not yield enough supply. In many ways, loko iʻa are foundational to traditional aquaculture in Hawai‘i and have the potential to provide food security that contributes to greater coastal community resilience and economic autonomy. Today, changes in coastal and hydrological processes, including...
thumbnail
Hawaiian shorelines and near-shore waters have long been used for cultural activities, food gathering and fishing, and recreation. As seascapes are physically altered by changing climate, the ways in which people experience these environments will likely change as well. Local perspectives of how seascapes are changing over time can help managers better understand and manage these areas for both natural persistence and human use. For this project, researchers conducted interviews and surveys of surfers and other ocean users to gather observations and perceptions of change over time at Hilo Bay, Hawaiʻi. They combined these results with historical data on public beach use and biophysical data from monitoring buoys...
thumbnail
Forests are of tremendous ecological and economic importance. They provide natural places for recreation, clean drinking water, and important habitats for fish and wildlife. However, the warmer temperatures and harsher droughts in the west that are related to climate change are causing die-offs of many trees. Outbreaks of insects, like the mountain pine beetle, that kill trees are also more likely in warmer, drier conditions. To maintain healthy and functioning forest ecosystems, one action forest managers can take is to make management decisions that will help forests adapt to future climate change. However, adaptation is a process based on genetic change and few tools are currently available for managers to use...
thumbnail
Road crossings at rivers and streams can create barriers to the movement of migratory fish when they are improperly designed or constructed. Washington State is home to several threatened species of salmon and trout, including bull trout, and recovery plans for these fish include repairing or replacing culverts that currently block their passage. The state is currently looking to replace approximately 1,000 culverts at an estimated cost of $2.45 billion. As engineers re-design these culverts, which typically have a service life of 50-100 years, it will be important to consider how changing climate conditions will impact streams in the region. Climate change is projected to increase peak streamflows, and therefore...
thumbnail
The Integrated Scenarios of the Future Northwest Environment project (an FY2012 NW CSC funded project), resulted in several datasets describing projected changes in climate, hydrology and vegetation for the 21st century over the Northwestern US. The raw data is available in netCDF format, which is a standard data file format for weather forecasting/climate change/GIS applications. However, the sheer size of these datasets and the specific file format (netCDF) for data access pose significant barriers to data access for many users. This is a particular challenge for many natural/cultural resource managers and others working on conservation efforts in the Pacific Northwest. The goal of this project was to increase...
thumbnail
The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project supports climate-smart conservation and management across forests of northern Idaho...
thumbnail
As the impacts of climate change amplify, understanding the consequences for wetlands will be critical for their sustainable management and conservation, particularly in arid regions such as the Columbia Plateau. The depressional wetlands in this region (wetlands located in topographic depressions where water can accumulate) are an important source of surface water during the summer months. However, their health depends directly on precipitation and evaporation, making them susceptible to changes in temperature and precipitation. Yet few tools for monitoring water movement patterns (hydrology) in and out of these landscapes currently exist, hindering efforts to model how they are changing. This project provided...


map background search result map search result map Improving Projections of Hydrology in the Pacific Northwest From Icefield to Ocean: Glacier Change Impacts to Alaska’s Coastal Ecosystems Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Changing Hawaiian Seascapes and Their Management Implications Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau Using Genetic Information to Understand Drought Tolerance and Bark Beetle Resistance in Whitebark Pine Forests Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Improving Characterizations of Future Wildfire Risk in Alaska Foundational Science Area: Climate Adaptation Strategies for Wildlife and Habitats in the North Central U.S. Northwest Boreal Science and Management Research Tool Enabling Climate-Informed Planning and Decisions about Species of Conservation Concern in the North Central Region: Phase 2 Supporting Climate-Resilient Design for In-Stream Restoration and Fish Passage Projects Science Needs Assessment to Support Management of Loko Iʻa (Hawaiian Fishpond) Resources and Practices Critical to the Native Hawaiian Community Learning From the Past and Planning for the Future: Experience-Driven Insight Into Managing for Ecosystem Transformations Induced by Drought and Wildfire Enhancing Stakeholder Capacity for Coastal Inundation Assessments in the Marshall Islands NW CASC Deep Dives: Actionable Science Agendas for Emerging Climate Risks Applying Climate Change Modeling to Selected Key Factors in Ecosystem Health and Adaptation in Alaska Impact of Climate Driven Changes to Water Levels on Recreational Fisheries in the Northern Glaciated Plains Using Genetic Information to Understand Drought Tolerance and Bark Beetle Resistance in Whitebark Pine Forests Changing Hawaiian Seascapes and Their Management Implications Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau Supporting Climate-Resilient Design for In-Stream Restoration and Fish Passage Projects Impact of Climate Driven Changes to Water Levels on Recreational Fisheries in the Northern Glaciated Plains Enhancing Stakeholder Capacity for Coastal Inundation Assessments in the Marshall Islands Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data NW CASC Deep Dives: Actionable Science Agendas for Emerging Climate Risks Learning From the Past and Planning for the Future: Experience-Driven Insight Into Managing for Ecosystem Transformations Induced by Drought and Wildfire Improving Projections of Hydrology in the Pacific Northwest Science Needs Assessment to Support Management of Loko Iʻa (Hawaiian Fishpond) Resources and Practices Critical to the Native Hawaiian Community Enabling Climate-Informed Planning and Decisions about Species of Conservation Concern in the North Central Region: Phase 2 Foundational Science Area: Climate Adaptation Strategies for Wildlife and Habitats in the North Central U.S. From Icefield to Ocean: Glacier Change Impacts to Alaska’s Coastal Ecosystems Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy Northwest Boreal Science and Management Research Tool Improving Characterizations of Future Wildfire Risk in Alaska Applying Climate Change Modeling to Selected Key Factors in Ecosystem Health and Adaptation in Alaska