Skip to main content
Advanced Search

Filters: Tags: {"type":"CMS Status"} (X) > Categories: Project (X)

659 results (172ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=CMS Status )
View Results as: JSON ATOM CSV
thumbnail
The goal of this project was to inform implementation of the Greater Yellowstone Coordinating Committee (GYCC) Whitebark Pine (WBP) subcommittee’s “WBP Strategy” based on climate science and ecological forecasting. Project objectives were to: 1. Forecast ecosystem processes and WBP habitat suitability across the Greater Yellowstone Area (GYA) under alternative IPCC future scenarios; 2. Improve understanding of possible response to future climate by analyzing WBP/climate relationships in past millennia; 3. Develop WBP management alternatives; 4. Evaluate the alternatives under IPCC future scenarios in terms of WBP goals, ecosystem services, and costs of implementation; and 5. Draw recommendations for implementation...
thumbnail
Resource managers, policymakers, and scientists require tools to inform water resource management and planning. Information on hydrologic factors – such as streamflow, snowpack, and soil moisture – is important for understanding and predicting wildfire risk, flood activity, and agricultural and rangeland productivity, among others. Existing tools for modeling hydrologic conditions rely on information on temperature and precipitation. This project sought to evaluate different methods for downscaling global climate models – that is, taking information produced at a global scale and making it useable at a regional scale, in order to produce more accurate projections of temperature and precipitation for the Pacific...
thumbnail
Recent open data policies of the Office of Science and Technology Policy (OSTP) and Office of Management and Budget (OMB), which were fully enforceable on October 1, 2016, require that federally funded information products (publications, etc.) be made freely available to the public, and that the underlying data on which the conclusions are based must be released. A key and relevant aspect of these policies is that data collected by USGS programs must be shared with the public, and that these data are subject to the review requirements of Fundamental Science Practices (FSP). These new policies add a substantial burden to USGS scientists and science centers; however, the upside of working towards compliance with...
thumbnail
Over the last few years, the ISO 19115 family of metadata standards has become the predominantly accepted worldwide standard for sharing information about the availability and usability of scientific datasets among researchers. The U.S. interests in the ISO standard have also been growing as global-scale science demands participation with the broader international community; however, adoption has been slow because of the complexity and rigor of the ISO metadata standards. In addition, support for the standard in current implementations has been minimal. Principal Investigator : Stan Smith, Joshua Bradley Cooperator/Partner : Chis Turner In 2009, the Alaska Data Integration Working Group members (ADIwg) mobilized...
thumbnail
Inventories of landslides and liquefaction triggered by major earthquakes are key research tools that can be used to develop and test hazard models. To eliminate redundant effort, we created a centralized and interactive repository of ground failure inventories that currently hosts 32 inventories generated by USGS and non-USGS authors and designed a pipeline for adding more as they become available. The repository consists of (1) a ScienceBase community page where the data are available for download and (2) an accompanying web application that allows users to browse and visualize the available datasets. We anticipate that easier access to these key datasets will accelerate progress in earthquake-triggered ground...
thumbnail
Deep learning is a computer analysis technique inspired by the human brain’s ability to learn. It involves several layers of artificial neural networks to learn and subsequently recognize patterns in data, forming the basis of many state-of-the-art applications from self-driving cars to drug discovery and cancer detection. Deep neural networks are capable of learning many levels of abstraction, and thus outperform many other types of automated classification algorithms. This project developed software tools, resources, and two training workshops that will allow USGS scientists to apply deep learning to remotely sensed imagery and to better understand natural hazards and habitats across the Nation. The tools and...
thumbnail
The Gulf of Alaska is one of the most productive marine ecosystems on Earth, supporting salmon fisheries that alone provide nearly $1 billion per year in economic benefits to Southeast Alaska. Glaciers are central to many of the area’s natural processes and economic activities, but the rates of glacier loss in Alaska are among the highest on Earth, with a 26-36 percent reduction in total volume expected by the end of the century. This project brought together scientists and managers at a workshop to synthesize the impacts of glacier change on the region’s coastal ecosystems and to determine related research and monitoring needs. Collected knowledge shows that melting glaciers are expected to have cascading effects...
thumbnail
Northeastern boreal forests are an important habitat type for many wildlife species, including migratory birds and moose. These animals play vital roles in the boreal forest ecosystem, are a source of pleasure for bird and wildlife watchers, and contribute to tourism revenue for many communities. However, moose and migratory birds are thought to be particularly vulnerable to the impacts of climate change. For example, in New York’s Adirondack Park system, five species of boreal birds have shown occupancy declines of 15% or more. Meanwhile, moose are threatened by winter ticks that thrive in warmer climates and spread disease. A 2018 New York Department of Environmental Conservation (NYDEC) report found that there...
thumbnail
Changing climate conditions such as increasing droughts, floods, and wildfires, hotter temperatures, declining snowpacks, and changes in the timing of seasonal events are already having an impact on wildlife and their habitats. In order to make forward-looking management decisions that consider ongoing and future projected changes in climate, managers require access to climate information that can be easily integrated into the planning process. Co-production, a process whereby scientists work closely with managers to identify and fill knowledge gaps, is an effective means of ensuring that science results will be directly useful to managers. Through a multi-phase project, researchers are implementing co-production...
thumbnail
Researchers with the North Central Climate Science Center have made substantial progress in assessing the impacts of climate and land use change on wildlife and ecosystems across the region. Building on this progress, researchers will work with stakeholders to identify adaptation strategies and inform resource management in the areas that will be most affected by changing conditions. There are several components of this project. First, researchers will use the Department of Interior “resource briefs” as a mechanism to communicate information to resource managers on climate and land use change and their impacts to resources. These briefs will support coordinated management of ecosystems that contain public, private,...
thumbnail
We are working to incorporate environmental DNA (eDNA) data into the Nonindigenous Aquatic Species (NAS) database, which houses over 570,000 records of nonindigenous species nationally, and already is used by a broad user-base of managers and researchers regularly for invasive species monitoring. eDNA studies have allowed for the identification and biosurveillance of numerous invasive and threatened species in managed ecosystems. Managers need such information for their decision-making efforts, and therefore require that such data be produced and reported in a standardized fashion to improve confidence in the results. As we work to gain community consensus on such standards, we are finalizing the process for submitting...
The purpose of this study is to understand how the USGS is using decision support, learning from successes and pitfalls in order to help streamline the design and development process across all levels of USGS scientific tool creation and outreach. What should researchers consider before diving into tool design and development? Our goal is to provide a synthesis of lessons learned and best practices across the spectrum of USGS decision support efforts to a) provide guidance to future efforts and b) identify knowledge gaps and opportunities for knowledge transfer and integration. Principal Investigator : Amanda E Cravens Co-Investigator : Nicole M Herman-Mercer, Amanda Stoltz
thumbnail
Wildfires affect streams and rivers when they burn vegetation and scorch the ground. This makes floods more likely to happen and reduces water quality. Public managers, first responders, fire scientists, and hydrologists need timely information before and after a fire to plan for floods and water treatment. This project will create a method to combine national fire databases with the StreamStats water web mapping application to help stakeholders make informed decisions. When the project is finished, people will be able to use StreamStats to estimate post-wildfire peak flows in streams and rivers for most of the United States (where data is available). There will also be tools that allow users to trace upstream and...
thumbnail
It is well know that every earthquake can spawn others (e.g., as aftershocks), and that such triggered events can be large and damaging, as recently demonstrated by L’Aquila, Italy and Christchurch, New Zealand earthquakes. In spite of being an explicit USGS strategic-action priority (http://pubs.usgs.gov/of/2012/1088; page 32), the USGS currently lacks an automated system with which to forecast such events and official protocols for disseminating the potential implications. This capability, known as Operational Earthquake Forecasting (OEF), could provide valuable situational awareness to emergency managers, the public, and other entities interested in preparing for potentially damaging earthquakes. With the various...
thumbnail
There has been increasing attention placed on the need for water availability information at ungauged locations, particularly related to balancing human and ecological needs for water. Critical to assessing water availability is the necessity for daily streamflow time series; however, most of the rivers in the United States are ungauged. This proposal leverages over $1M currently allocated to the USGS National Water Census Program towards developing an integrated modeling approach to estimate daily streamflow at ungauged locations, with the ultimate goal of providing daily streamflow estimates at 160,000 ungauged catchments across the United States. By assembling a diverse and prolific group of international scientists,...
thumbnail
Advancing our mechanistic understanding of ecosystem responses to climate change is critical to improve ecological theories, develop predictive models to simulate ecosystem processes, and inform sound policies to manage ecosystems and human activities. Manipulation of temperature in the field, or the “ecosystem warming experiment,” has proved to be a powerful tool to understand ecosystem responses to changes in temperature. No comprehensive synthesis has been conducted since the last one more than 10 years ago. A new synthetic analysis is critically needed to advance our understanding of ecosystem responses to warming, to highlight experimental artifacts and appropriate interpretations, and to guide development...
thumbnail
Shale gas is a key source of onshore domestic energy for the United States and production of this resource is increasing rapidly. Development and extraction of shale gas requires hydraulic fracturing, which entails horizontal drilling, perforation of steel casing and cement grout using explosive charges, and expansion of fractures using fluids under high pressure. Concern over potential environmental effects of shale gas development is growing and based on a recent review there is very little information in the scientific literature on potential environmental effects of hydraulic fracturing. We propose to conduct the first broad scale, data-based assessment of the potential effects of hydraulic fracturing on water...
thumbnail
Tropical forests contain > 50% of the world’s known species (Heywood 1995), 55% of global forest biomass (Pan et al. 2011), and exchange more carbon (C), water and energy with the atmosphere than any other ecosystem type (e.g., Saugier et al. 2001). Despite their importance, there is more uncertainty associated with predictions of how tropical forests will respond to warming than for any other biome (Randerson et al. 2009). This uncertainty is of global concern due to the large quantity of C cycled by these forests and the high potential for biodiversity loss. Given the importance of tropical forests, decision makers and land managers around the globe need increased predictive capacity regarding how tropical forests...
thumbnail
Global biodiversity is rapidly declining, threatening humans, ecosystems, and the services that society relies upon. Monitoring and understanding the extent of biodiversity declines can support policy decisions. Genetic diversity is the foundation of biodiversity, determining the capacity of populations to adapt to environmental changes and to sustain function and structure in all ecosystems. While the availability of genetic diversity data has exponentially increased in the past decade, genetic data have been poorly mobilized to understand biodiversity change at large scales; consequently, there is limited integration into management and policy. To solve this challenge, large-scale synthesis of genetic diversity...
thumbnail
Loko iʻa (Hawaiian fishponds) are an advanced, extensive form of aquaculture found nowhere else in the world. Loko iʻa practices are the result of over a thousand years of intergenerational knowledge, experimentation, and adaptation, and once produced over 2 million pounds of fish per year throughout the Hawaiian Islands. These fishponds provided a consistent and diverse supply of fish when ocean fishing was not possible or did not yield enough supply. In many ways, loko iʻa are foundational to traditional aquaculture in Hawai‘i and have the potential to provide food security that contributes to greater coastal community resilience and economic autonomy. Today, changes in coastal and hydrological processes, including...


map background search result map search result map Improving Projections of Hydrology in the Pacific Northwest From Icefield to Ocean: Glacier Change Impacts to Alaska’s Coastal Ecosystems Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Foundational Science Area: Climate Adaptation Strategies for Wildlife and Habitats in the North Central U.S. Enabling Climate-Informed Planning and Decisions about Species of Conservation Concern in the North Central Region: Phase 2 Science Needs Assessment to Support Management of Loko Iʻa (Hawaiian Fishpond) Resources and Practices Critical to the Native Hawaiian Community Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Improving Projections of Hydrology in the Pacific Northwest Science Needs Assessment to Support Management of Loko Iʻa (Hawaiian Fishpond) Resources and Practices Critical to the Native Hawaiian Community Enabling Climate-Informed Planning and Decisions about Species of Conservation Concern in the North Central Region: Phase 2 Foundational Science Area: Climate Adaptation Strategies for Wildlife and Habitats in the North Central U.S. From Icefield to Ocean: Glacier Change Impacts to Alaska’s Coastal Ecosystems Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy