Skip to main content
Advanced Search

Filters: Date Range: {"choice":"year"} (X) > Categories: Publication (X) > partyWithName: Northwest CSC (X)

71 results (12ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/hyp.10964/abstract): While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, Distributed Hydrology Soil Vegetation Model-Water Quality (DHSVM-WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds...
Wildfire refugia are forest patches that are minimally-impacted by fire and provide critical habitats for fire-sensitive species and seed sources for post-fire forest regeneration. Wildfire refugia are relatively understudied, particularly concerning the impacts of subsequent fires on existing refugia. We opportunistically re-visited 122 sites classified in 1994 for a prior fire refugia study, which were burned by two wildfires in 2012 in the Cascade mountains of central Washington, USA. We evaluated the fire effects for historically persistent fire refugia and compared them to the surrounding non-refugial forest matrix. Of 122 total refugial (43 plots) and non-refugial (79 plots) sites sampled following the 2012...
Public Summary: The area burned by wildfires is expected to increase in many watersheds of the world over the next century as a function of climate change. Increased sedimentation due to soil erosion in burned watersheds can negatively impact downstream aquatic ecosystems and the quality and supply of water. At least 65% of the water supply in the western USA originates in watersheds covered by trees, shrubs, and/or grasses that are prone to wildfire16. Understanding how changing fire frequency, extent, and location will affect watersheds, reservoirs, and the ecosystem services they supply to communities is therefore of great societal importance. A primary threat to socio-ecological systems in this region from...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/hyp.11144/full): The extensive forests that cover the mountains of the Pacific Northwest, USA, modify snow processes and therefore affect snow water storage as well as snow disappearance timing. However, forest influences on snow accumulation and ablation vary with climate, topography, and land cover and are therefore subject to substantial temporal and spatial variability. We utilize multiple years of snow observations from across the region to assess forest-snow interactions in the relatively warm winter conditions characteristic of the maritime and maritime-continental climates. We (1) quantify the difference in snow magnitude and disappearance timing...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2015WR017873/abstract): Spatially distributed snow depth and snow duration data were collected over two to four snow seasons during water years 2011–2014 in experimental forest plots within the Cedar River Municipal Watershed, 50 km east of Seattle, Washington, USA. These 40 × 40 m forest plots, situated on the western slope of the Cascade Range, include unthinned second-growth coniferous forests, variable density thinned forests, forest gaps in which a 20 m diameter (approximately equivalent to one tree height) gap was cut in the middle of each plot, and old-growth forest. Together, this publicly available data set includes snow depth and density observations...
Abstract (from http://www.publish.csiro.au/WF/WF16165): Interannual variability in burn severity is assessed across forested ecoregions of the western United States to understand how it is influenced by variations in area burned and climate during 1984–2014. Strong correlations (|r| > 0.6) between annual area burned and climate metrics were found across many of the studied regions. The burn severity of individual fires and fire seasons was weakly, but significantly (P < 0.05), correlated with burned area across many regions. Interannual variability in fuel dryness evaluated with fuel aridity metrics demonstrated weak-to-moderate (|r| >0.4) relationships with regional burn severity, congruent with but weaker than...
Streams are classified as perennial (flowing uninterrupted, year-round) or intermittent (flowing part of the year) or ephemeral (flowing only during rainfall events). The classifications of “streamflow permanence” were primarily established in the middle 20th century and are often outdated and inaccurate today if they were not adjusted for changes in land use, wildfires, or climate. Understanding where streams are perennial is important for a variety of reasons. For example, perennial streams receive special regulatory protections under a variety of statutes, and provide important habitat for fish, wildlife, and other species. To predict the likelihood that streams are perennial, we compiled nearly 25,000 observations...
Abstract: Restoration of degraded wet meadows found on upland valley floors has been proposed to achieve a range of ecological benefits, including augmenting late‐season streamflow. There are, however, few field and modelling studies documenting hydrologic changes following restoration that can be used to validate this expectation, and published changes in groundwater levels and streamflow following restoration are inconclusive. Here, we assess the streamflow benefit that can be obtained by wet‐meadow restoration using a physically based quantitative analysis. This framework employs a 1‐dimensional linearized Boussinesq equation with a superimposed solution for changes in storage due to groundwater upwelling and...
Greater sage-grouse (Centrocercus urophasianus) is a candidate for listing under the Endangered Species Act because of population and habitat fragmentation coupled with inadequate regulatory mechanisms to control development in critical areas. In addition to the current threats to habitat, each 1 degree celsius increase due to climate change is expected to result in an additional 87,000 km2 of sagebrush (Artemisia spp.) that will be converted to unsuitable habitat for sage-grouse. Thus, the future distribution and composition of sagebrush landscapes is likely to differ greatly from today’s configuration. We conducted a large, multi-objective project to identify: (1) characteristics of habitats required by sage-grouse,...
Final Report for the Third Annual Pacific Northwest Climate Science Conference
Categories: Publication; Types: Citation; Tags: Northwest CASC, conference
Abstract (from http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate2252.html): Climate change will decrease worldwide biodiversity through a number of potential pathways1, including invasive hybridization2 (cross-breeding between invasive and native species). How climate warming influences the spread of hybridization and loss of native genomes poses difficult ecological and evolutionary questions with little empirical information to guide conservation management decisions3. Here we combine long-term genetic monitoring data with high-resolution climate and stream temperature predictions to evaluate how recent climate warming has influenced the spatio-temporal spread of human-mediated hybridization between...
Climate change is expected to have different effects in different parts of the world. For this reason, regionally-specific projections of climate and environmental change are important to help those who need to plan how best to adapt. The goal of this project was to use the latest global climate models and state of the science models of vegetation and hydrology, to describe what the latest science says about the Northwest’s future climate, vegetation, and hydrology. Researchers in the project began by evaluating the ability of climate models to simulate observed climate patterns in the Northwest region. The best performing models were ‘downscaled’, that is, remapped onto the finer grids used in models of hydrology...
Abstract (from http://www.hydrol-earth-syst-sci.net/21/1/2017/): The phase of precipitation when it reaches the ground is a first-order driver of hydrologic processes in a watershed. The presence of snow, rain, or mixed-phase precipitation affects the initial and boundary conditions that drive hydrological models. Despite their foundational importance to terrestrial hydrology, typical phase partitioning methods (PPMs) specify the phase based on near-surface air temperature only. Our review conveys the diversity of tools available for PPMs in hydrological modeling and the advancements needed to improve predictions in complex terrain with large spatiotemporal variations in precipitation phase. Initially, we review...
Abstract (from http://jcom.sissa.it/archive/15/01/JCOM_1501_2016_A01): Whereas the evolution of snow cover across forested mountain watersheds is difficult to predict or model accurately, the presence or absence of snow cover is easily observable and these observations contribute to improved snow models. We engaged citizen scientists to collect observations of the timing of distributed snow disappearance over three snow seasons across the Pacific Northwest, U.S.A. . The primary goal of the project was to build a more spatially robust dataset documenting the influence of forest cover on the timing of snow disappearance, and public outreach was a secondary goal. Each year's effort utilized a different strategy, building...
The Fourth Annual Pacific Northwest Climate Science Conference was held in Portland, Oregon on September 5-6, 2013. The Conference is an annual forum for researchers and practitioners to convene and exchange scientific results, challenges, and solutions related to the effects of climate on people, natural resources, and infrastructure in the Pacific Northwest. The Conference attracts a wide range of participants including policy- and decision-makers, resource managers, public agency staff, non-governmental organization personnel, and scientists. As such, the Conference emphasizes oral presentations that are comprehensible to a wide audience and on topics of broad interest and aims to be the best opportunity to stimulate...
Abstract (from ScienceDirect): The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided...
Abstract (from http://www.bioone.org/doi/abs/10.3955/046.089.0305): It is hypothesized that climate impacts forest mosaics through dynamic ecological processes such as wildfires. However, climate-fire research has primarily focused on understanding drivers of fire frequency and area burned, largely due to scale mismatches and limited data availability. Recent datasets, however, allow for the investigation of climate influences on ecological patch metrics across broad regions independent of area burned and at finer scale. One area of particular interest is the distribution of fire refugia within wildfire perimeters. Although much recent research emphasis has been placed on high-severity patches within wildfires,...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0378112716308532): Across the western United States, the three primary drivers of tree mortality and carbon balance are bark beetles, timber harvest, and wildfire. While these agents of forest change frequently overlap, uncertainty remains regarding their interactions and influence on specific subsequent fire effects such as change in canopy cover. Acquisition of pre- and post-fire Light Detection and Ranging (LiDAR) data on the 2012 Pole Creek Fire in central Oregon provided an opportunity to isolate and quantify fire effects coincident with specific agents of change. This study characterizes the influence of pre-fire mountain pine beetle (MPB; Dendroctonus...
Abstract (from http://iopscience.iop.org/article/10.1088/1748-9326/aa6f94/meta): High temperatures and severe drought contributed to extensive tree mortality from fires and bark beetles during the 2000s in parts of the western continental United States. Several states in this region have greenhouse gas (GHG) emission targets and would benefit from information on the amount of carbon stored in tree biomass killed by disturbance. We quantified mean annual tree mortality from fires, bark beetles, and timber harvest from 2003–2012 for each state in this region. We estimated tree mortality from fires and beetles using tree aboveground carbon (AGC) stock and disturbance data sets derived largely from remote sensing. We...
We used a first-of-its-kind comprehensive scenario approach to evaluate both the vertical and horizontal response of tidal wetlands to projected changes in the rate of sea-level rise (SLR) across 14 estuaries along the Pacific coast of the continental United States. Throughout the U.S. Pacific region, we found that tidal wetlands are highly vulnerable to end-of-century submergence, with resulting extensive loss of habitat. Using higher-range SLR scenarios, all high and middle marsh habitats were lost, with 83% of current tidal wetlands transitioning to unvegetated habitats by 2110. The wetland area lost was greater in California and Oregon (100%) but still severe in Washington, with 68% submerged by the end of the...