Skip to main content
Advanced Search

Filters: Date Range: {"choice":"month"} (X) > Categories: Publication (X)

38 results (72ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset contains information from 674 publications (academic and grey literature) that assessed the effects of climate variability and climate change on the 15 ungulate species that are native to the United States, Canada, Mexico, and Greenland. The publication contains literature published between 1947 and September 2020. Information documented includes study location, climate variables assessed, and ungulate outcomes measured (e.g., life history characteristics, population demographics, migratory behavior).
Phenology detection from remotely sensed data remains challenging in semi-arid ecosystems due to the unique spatial heterogeneity and irregular temporal growth in plants. PlanetScope imagery, with fine spatial and temporal resolutions, is revolutionizing the earth observation sector. It has demonstrated its effectiveness in monitoring phenology dynamics across various terrestrial ecosystems. However, the quality and accuracy of PlanetScope data for depicting plant growth development and detecting phenological metrics (phenometrics) in semi-arid environments have not been systematically examined. In this study, we evaluated the capability of PlanetScope for monitoring plant-specific phenology across the semi-arid...
Categories: Publication; Types: Citation
The operational Simplified Surface Energy Balance (SSEBop) model has been utilized to generate gridded evapotranspiration data from Landsat images. These estimates are primarily driven by two sources of information: reference evapotranspiration and Landsat land surface temperature (LST) values. Hence, SSEBop is limited by the availability of Landsat data. Here, in this proof-of-concept paper, we utilize the Continuous Change Detection and Classification (CCDC) algorithm to generate synthetic Landsat data, which are then used as input for SSEBop to generate evapotranspiration estimates for six target areas in the continental United States, representing forests, shrublands, and irrigated agriculture. These synthetic...
Categories: Publication; Types: Citation
Abstract (from ESAJournals): Historical horticultural plant sales influence native and nonnative species assemblages in contemporary ecosystems. Over half of nonnative, invasive plants naturalized in the United States were introduced as ornamentals, and the spatial and temporal patterns of early introduction undoubtedly influence current invasion ecology. While thousands of digitized nursery catalogs documenting these introductions are publicly available, they have not been standardized in a single database. To fill this gap, we obtained the names of all plant taxa (species, subspecies, and varieties) present in the Biodiversity Heritage Library's (BHL) Seed and Nursery Catalog Collection. We then searched the BHL...
Categories: Publication; Types: Citation
American Samoa is experiencing rapid relative sea level rise due to increases in global sea level and significant post-2009 earthquake land subsidence, endangering homes and critical infrastructure. Wave and water-level observations collected over a fringing reef at Faga‘itua Bay, American Samoa, in 2017 reveal depth-limited shoreline sea-swell wave heights over the range of conditions sampled. Using field data to calibrate a one-dimensional, phase-resolving nonhydrostatic wave model (SWASH), we examine the influence of water level on wave heights over the reef for a range of current and future sea levels. Assuming a fixed reef bathymetry, model results predict rising sea levels will escalate nearshore extreme water...
Categories: Publication; Types: Citation
Simulation models are valuable tools for estimating ecosystem response to environmental conditions and are particularly relevant for investigating climate change impacts. However, because of high computational requirements, models are often applied over a coarse grid of points or for representative locations. Spatial interpolation of model output can be necessary to guide decision-making, yet interpolation is not straightforward because the interpolated values must maintain the covariance structure among variables. We present methods for two key steps for utilizing limited simulations to generate detailed maps of multivariate and time series output. First, we present a method to select an optimal set of simulation...
Categories: Publication; Types: Citation
The mission of the US Geological Survey’s National Climate Adaptation Science Center (NCASC) is to provide managers, policy-makers, and other stakeholders with information and decision-making tools to respond to effects of climate change on natural resources. In support of this goal, the NCASC has supported exceptional mentoring experiences for graduate students from select partner institutions in developing policy-relevant products related to managing climate change impacts on fish, wildlife, and/or ecosystems. For many graduate students conducting research on the impacts of climate change on natural resources, disseminating results of their research to managers, policy-makers, or other stakeholders is not required...
Categories: Publication; Types: Citation
We developed a framework to estimate high-resolution spatiotemporal soil moisture (monthly, annual, and seasonal) and temperature-moisture regimes. Our approach uses the Newhall simulation model (NSM) which we fully describe in the Larger Citation. For our analyses, we developed and used open-source software (spatial_nsm) relying on Python^TM^ that was translated from jNSM software (v. 1.6.1; U.S. Department of Agriculture 2016)---a java implementation of the NSM relies on aspatial climate stations. Our software allows for spatial estimates, supports additional parameters to inform the model, and improves upon elements of the originating software. Briefly, the NSM is an accounting system of water movement in a vertical...
Categories: Publication; Types: Citation
thumbnail
Fish catch and effort data for three species caught in gill nets and trap nets between 1988 and 2019 as part of Minnesota Department of Natural Resources (MNDNR) fisheries surveys conducted during the summer and early fall are included from over 1,300 Minnesota lakes. The three fish species included are: bluegill (Lepomis marochirus) a warm-water adapted species, yellow perch (Perca flavescens) a cool-water adapted species, and cisco (Coregonus artedi) a cold-water adapted species. Additional data concerning lake characteristics and surrounding land cover were also included. Mean July lake surface temperature was calculated using simulated daily water temperatures. Watershed land use including agricultural, barren,...
thumbnail
These model objects are the outputs of three Boosted Regression Tree models (for three different time periods) to explore the role of climate change and variability in driving ecological change and transformation. Response variables were the proportion of sites in each ecoregion with peak rates of change at 100-year time steps. Predictor variables included temperature anomaly, temperature trend, temperature variability, precipitation anomaly, precipitation trend, precipitation variability and ecoregion, also at 100-yr time steps. Models focused on the most distant time periods (0-21000 BP and 7500 - 21000 BP) show that rapid vegetation change was initiated across these landscapes once a 2 ℃ temperature increase...
thumbnail
This file provides a table of all the of Species of Greatest Conservation Need listed in the North Central states' (MT, WY, CO, ND, SD, NE, and KS) State Wildlife Action Plans as of summer 2020. Species are organized by the number of states which listed them as Species of Greatest Conservation Need, and then by scientific name. Federal status is also provided for each species. This table is adapted from an unpublished species list compiled by the North Central Climate Adaptation Science Center.
thumbnail
This project investigated how climate change over the last 21,000 years, which was characterized by significant warming, influenced vegetation in the Southern and Middle Rockies. We found that rapid vegetation change was initiated across these landscapes once a 2 ℃ temperature increase was realized and again recently with reduced rainfall. Southwesterly slopes in the Southern Rockies were prone to rapid change, otherwise landscape features didn’t have a strong effect. We also examined vegetation transformations (e.g., sagebrush steppe switches to a lodgepole pine forest) and identified between one and four vegetation transformations at each site, for a total of 60 transformations, over half of which occurred rapidly....
Across the Hawaiian Islands, effective management of at-risk species often relies on fine-scale actions by natural resource managers. However, balancing these actions with competing land use objectives concurrently can be challenging, especially in the context of a shifting climate. One example is the challenge of managing for hunting of non-native ungulates for subsistence and recreation, which often conflicts with the conservation of native species, and there is little reliable data to guide effective management. To address this issue, we modeled the habitat associations of axis deer and mouflon sheep on the Island of Lānaʻi. We found that both species occupy habitat different from their native environment, and...
Categories: Publication; Types: Citation
thumbnail
These model objects are the outputs of two Bayesian hierarchical models (one for the Middle Rockies and one for the Southern Rockies) to explore the role of landscape characteristics in climate-driven ecological change and transformation. We used the rate of change for each site at 100-yr time steps as the response variable, and included elevation, CHILI, aspect, slope, and TPI as fixed effects in the models, run separately for each ecoregion. We included a random intercept of site to quantify the magnitude of site-level variation in rate-of-change that may be unaccounted for by our covariates.
Abstract (from Bioscience): Invasive plants are often sold as ornamental garden plants, but how often are species sold in the same locations as where they are invasive? To answer this question, we assessed the geography of ornamental plant sales in the United States in relation to existing invasions and potential invasion risk with climate change. Using a data set of 672 nurseries selling 89 invasive plants, we estimated the distance between nursery sales and invasive species’ observed distributions. We also used species range maps to identify nursery sales within current potential invaded ranges, as well as within species’ future potential ranges given climate change. Half of the species were sold by a nursery...
Categories: Publication; Types: Citation
thumbnail
This database integrates a list of vegetation transformations that occurred across the Southern and Middle Rockies since 21,000 years ago, the age of occurrence, the type of vegetation switch that occurred, whether the rates of vegetation change peaked at that time, and when applicable, the duration of peak rates of vegetation change.
thumbnail
We developed a screening system to identify introduced plant species that are likely to increase wildfire risk, using the Hawaiian Islands to test the system and illustrate how the system can be applied to inform management decisions. Expert-based fire risk scores derived from field experiences with 49 invasive species in Hawai′i were used to train a machine learning model that predicts expert fire risk scores from among 21 plant traits obtained from literature and databases. The model revealed that just four variables can identify species categorized as higher fire risk by experts with 90% accuracy, while low risk species were identified with 79% accuracy. We then used the predictive model to screen 365 naturalized...


map background search result map search result map Climate drivers of rapid ecological change at the landscape scale over the last 21,000 years in the Middle and Southern Rockies, U.S.A. The role of landscape characteristics in climate-driven rapid ecological change over the last 21,000 years in the Middle and Southern Rockies, U.S.A. Type and speed of vegetation transformations over the past 21,000 years in the Middle and Southern Rockies, U.S.A. PaleoTransformation Analysis Model Code Species of Greatest Conservation Need in the North Central Region Data in Support of Predicting Climate Change Impacts on Poikilotherms Using Physiologically Guided Species Abundance Models Fire Risk Scores from Predictive Model Based on Flammability and Fire Ecology of Non-Native Hawaiian Plants from 2020-2021 Catalogue of the literature assessing climate effects on ungulates in North America (1947-2020) Data in Support of Predicting Climate Change Impacts on Poikilotherms Using Physiologically Guided Species Abundance Models Climate drivers of rapid ecological change at the landscape scale over the last 21,000 years in the Middle and Southern Rockies, U.S.A. The role of landscape characteristics in climate-driven rapid ecological change over the last 21,000 years in the Middle and Southern Rockies, U.S.A. Type and speed of vegetation transformations over the past 21,000 years in the Middle and Southern Rockies, U.S.A. PaleoTransformation Analysis Model Code Fire Risk Scores from Predictive Model Based on Flammability and Fire Ecology of Non-Native Hawaiian Plants from 2020-2021 Species of Greatest Conservation Need in the North Central Region Catalogue of the literature assessing climate effects on ungulates in North America (1947-2020)