Skip to main content
Advanced Search

Filters: partyWithName: Peter S Coates (X)

123 results (25ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different population growth rates among smaller clusters. Equally so, the spatial structure and ecological...
thumbnail
This shapefile represents proposed management categories (Core, Priority, General, and Non-Habitat) derived from the intersection of habitat suitability categories and lek space use. Habitat suitability categories were derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California formed from the multiplicative product of the spring (mid-March to June), summer (July to mid-October), and winter (November to March) HSI surfaces.
thumbnail
These data represent an resource selection function (RSF) for translocated sage-grouse in North Dakota during the brooding season. Human enterprise has led to large‐scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage‐grouse (Centrocercus urophasianus; hereafter sage‐grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid‐1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage‐grouse’...
thumbnail
These data describe coarse habitat use, activity information, and differences between used and available microhabitats and vegetation types to provide information about the behavior and habitat relationships of adult female giant gartersnakes (Thamnophis gigas) associated with a restored marsh in the Sacramento Valley of California. These data support the following publication: Brian J. Halstead, Patricia Valcarcel, Glenn D. Wylie, Peter S. Coates, Michael L. Casazza, and Daniel K. Rosenberg (2016) Active Season Microhabitat and Vegetation Selection by Giant Gartersnakes Associated with a Restored Marsh in California. Journal of Fish and Wildlife Management: December 2016, Vol. 7, No. 2, pp. 397-407. https://doi.org/10.3996/042016-JFWM-029
thumbnail
A hierarchical occupancy model adapted from Royle & Dorazio (2008) and Rota et al. (2011) for use in R. References: Royle, J.A. and Dorazio, R.M., 2008. Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities. Academic Press. doi:10.1016/B978-0-12-374097-7.50001-5 J. Andrew Royle, Robert M. Dorazio, Rota, C. T., Fletcher Jr, R. J., Dorazio, R. M. and Betts, M. G. (2009), Occupancy estimation and the closure assumption. Journal of Applied Ecology, 46: 1173-1181. doi:10.1111/j.1365-2664.2009.01734.x
thumbnail
Greater sage-grouse (Centrocercus urophasianus) are at the center of state and national land use policies largely because of their unique life-history traits as an ecological indicator for health of sagebrush ecosystems. These data represent an updated population trend analysis and Targeted Annual Warning System (TAWS) for state and federal land and wildlife managers to use best available science to help guide current management and conservation plans aimed at benefitting sage-grouse populations range-wide. This analysis relied on previously published population trend modeling methodology from Coates and others (2021, 2022) and includes population lek count data from 1960-2023. Bayesian state-space models estimated...
thumbnail
We expanded developed methodology to incorporate habitat selection and survival during reproductive life stages and specific seasons with updated greater sage-grouse location and known fate datasets. We included brood-rearing areas that are understood to be threatened and important for population persistence. We combined predictive habitat map surfaces for each life stage and season with updated information on current occupancy patterns to classify habitat based on its suitability and probability of occupancy. We performed additional steps to delineate example habitat management areas, specifically: (1) incorporated corridors connecting key nesting and brood-rearing habitat; (2) corrected outputs for pre-wildfire...
thumbnail
This raster dataset depicts phase 1 pinyon-juniper expansion , where shrubs and herbs are the dominant vegetation and conifers occupy greater than zero percent to ten percent, intersecting documented sage-grouse habitat management categories (Coates et al., 2016a, Coates et al., 2016b). These data support the following publication: K. Benjamin Gustafson, Peter S. Coates, Cali L. Roth, Michael P. Chenaille, Mark A. Ricca, Erika Sanchez-Chopitea, Michael L. Casazza, Using object-based image analysis to conduct high- resolution conifer extraction at regional spatial scales, International Journal of Applied Earth Observation and Geoinformation, Volume 73, December 2018, Pages 148-155, ISSN 0303-2434, https://doi.org/10.1016/j.jag.2018.06.002....
thumbnail
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California formed from the multiplicative product of the spring (mid-March to June), summer (July to mid-October), and winter (November to March) HSI surfaces.
thumbnail
Map of nesting habitat selection scores predicted from a resource selection function (RSF) developed from sage-grouse nest locations. Nest site selection was modeled using a generalized linear mixed model of used and random locations in a Bayesian modeling environment, and the midpoint of coefficient conditional posterior distributions were used for prediction. Continuous values were reclassified and ranked using a percent isopleth approach with respect to observed nest locations.
thumbnail
We use locations from previously released radio-marked greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) in a resource selection function framework to evaluate habitat selection following translocation and identify areas of seasonal habitat to inform habitat management and potential restoration needs. We also evaluate possible changes in seasonal habitat since the late 1980s using spatial data provided by the Rangeland Analysis Platform coupled with resource selection modeling results. Our results serve as critical baseline information for habitat used by translocated individuals across life stages in this study area, and will inform future evaluations of population performance and potential...
thumbnail
Sage-grouse habitat areas divided into proposed management categories within Nevada and California project study boundaries. MANAGEMENT CATEGORY DETERMINATION The process for category determination was directed by the Nevada Sagebrush Ecosystem Technical team. Sage-grouse habitat was determined from a statewide resource selection function model and first categorized into 4 classes: high, moderate, low, and non-habitat. The standard deviations (SD) from a normal distribution of RSF values created from a set of validation points (10% of the entire telemetry dataset) were used to categorize habitat ‘quality’ classes. High quality habitat comprised pixels with RSF values < 0.5 SD, Moderate > 0.5 and < 1.0 SD, Low...
thumbnail
We combined approximately 28,000 raven point count surveys with data from more than 900 sage-grouse nests between 2009 and 2019 within the Great Basin, USA. We modeled variation in raven density using a Bayesian hierarchical distance sampling approach with environmental covariates on detection and abundance. Concurrently, we modeled sage-grouse nest survival using a hierarchical frailty model as a function of raven density as well as other environmental covariates that influence risk of failure. Raven density commonly exceeded more than 0.5 ravens per square kilometer and increased at low relative elevations with prevalent anthropogenic development and/or agriculture. Reduced sage-grouse nest survival was strongly...
thumbnail
Sage-grouse continue to use habitat following wildfire, so prioritizing high selection, low survival areas can help ameliorate potential post-wildfire ecological traps. This shapefile represents areas within the burn scars at the Virginia Mountains field site which are high selection and high or low survival which have been deemed to be 'priority' targets for post-fire restoration efforts. The 'burn scar' used in this project is an amalgamation of multiple fires which occurred within the field site during the summers of 2016 and 2017.
thumbnail
Nevada and northeastern California conifer features were classified from 2010, 2012, and 2013 NAIP Digital Ortho Quarter Quads (DOQQs) using the Feature Analyst 5.0 extension for ArcGIS 10.1. DOQQs were organized and grouped by Nevada Department of Wildlife Population Management Unit (PMU) locations, plus a 10 km area beyond the PMU extent. The polygons in this file represent dissolved boundaries of NAIP DOQQ polygons that were associated with the nearest PMU that they intersected. Many DOQQs had to be assigned to a PMU manually because they occurred beyond the original PMU boundary or fell along the boundary between two or more PMUs. Larger PMUs, such as Monitor and Quinn, were divided into smaller, more manageable,...
thumbnail
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada and northeastern California formed from the multiplicative product of the spring, summer, and winter HSI surfaces.
thumbnail
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during summer (July to mid-October)¸ which is a surrogate for habitat conditions during the sage-grouse brood-rearing period.
thumbnail
nv_lvl5_coarsescale: Nevada hierarchical cluster level 5 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl10_coarsescale: Wyoming hierarchical cluster level 10 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in...


map background search result map search result map Sage-grouse Management Categories in Nevada and NE California (August 2014) Composite Habitat Categories Shapefile Microhabitat and Vegetation Selection by Giant Gartersnakes Associated with a Restored Marsh in California High resolution conifer classification by Population Management Unit (PMU) index and accuracy assessment of Nevada and northeastern California (2017) Sage-grouse habitat management categories within phase 1 Pinyon-Juniper expansion in Nevada and northeastern California, derived from 2016 and 2017 Raster Products Hierarchical Occupancy Model Code for R and Accompanying Files Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 10 (Wyoming), Interim Composite Habitat Categories Shapfile Spring Season Habitat Categories Shapefile Summer Season Habitat Categories Shapefile Greater Sage-grouse Nest Selection, Nevada and California 2019 Geospatial Information and Predictive Maps of Greater Sage-grouse Habitat Selection in Southwestern North Dakota, USA Brooding RSF of Translocated Greater Sage-grouse in North Dakota, 2017 - 2018 Greater Sage-Grouse Relative Survival During the Early Brood Rearing Life Stage, Nevada and California Priority Areas for Habitat Restoration Post-Fire in the Virginia Mountains, Nevada (2018) Trends and a Targeted Annual Warning System for Greater Sage-Grouse in the Western United States (ver. 3.0, February 2024) Data to Support Hierarchical Models and Decision Support Maps to Guide Management of Subsidized Avian Predator Densities Rasters Representing Greater Sage-grouse Space Use, Habitat Selection, and Survival to Inform Habitat Management Microhabitat and Vegetation Selection by Giant Gartersnakes Associated with a Restored Marsh in California Priority Areas for Habitat Restoration Post-Fire in the Virginia Mountains, Nevada (2018) Geospatial Information and Predictive Maps of Greater Sage-grouse Habitat Selection in Southwestern North Dakota, USA Brooding RSF of Translocated Greater Sage-grouse in North Dakota, 2017 - 2018 Spring Season Habitat Categories Shapefile Composite Habitat Categories Shapfile Summer Season Habitat Categories Shapefile Composite Habitat Categories Shapefile Sage-grouse habitat management categories within phase 1 Pinyon-Juniper expansion in Nevada and northeastern California, derived from 2016 and 2017 Raster Products Greater Sage-grouse Nest Selection, Nevada and California 2019 Rasters Representing Greater Sage-grouse Space Use, Habitat Selection, and Survival to Inform Habitat Management Data to Support Hierarchical Models and Decision Support Maps to Guide Management of Subsidized Avian Predator Densities High resolution conifer classification by Population Management Unit (PMU) index and accuracy assessment of Nevada and northeastern California (2017) Greater Sage-Grouse Relative Survival During the Early Brood Rearing Life Stage, Nevada and California Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 10 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Nevada), Interim Sage-grouse Management Categories in Nevada and NE California (August 2014) Hierarchical Occupancy Model Code for R and Accompanying Files Trends and a Targeted Annual Warning System for Greater Sage-Grouse in the Western United States (ver. 3.0, February 2024)