Skip to main content
Advanced Search

Filters: partyWithName: Dylan Harrison-Atlas (X)

37 results (44ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas 50°). We provide these data here at 30 m resolution, grouped by Landscape Conservation...
thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas 50°). We provide these data here at 30 m resolution, grouped by Landscape Conservation...
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It provides a measure of vulnerability based on temperature change using a watershed-based analysis. The values range from 0 to 1 and are unitless, where Vtw = Et x (1-Aw). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It provides a measure of vulnerability based on biome velocity and using a terrestrial (moving window) anlaysis. The values range from 0 to 1 and are unitless, where Vhg = Eh x (1-Ag). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
For the Green River Basin Landscape Conservation Design (GRB LCD) assessment, we mapped the vulnerability of the critical habitat for threatened and endangered fish species to oil and gas development for each 12-digit hydrologic unit. The following threatened and endangered fish species were included in this vulnerability assessment: Colorado pikeminnow (Ptychocheilus lucius), Bonytail Chub (Gila elegans), Humpback chub (Gila cypha), and razorback sucker (Xyrauchen texanus). Using a vulnerability framework, we defined Sensitivity (S) as the average combined area of critical fish habitat within HUC12 polygons. Exposure (E) to oil and gas development was quantified the log transformed upstream flow accumulation of...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service; Tags: Colorado, Colorado, EARTH SCIENCE > LAND SURFACE > LANDSCAPE, Green River Basin, Green River Basin, All tags...
thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas <2°) or very steep (i.e. “cliffs” >50°). We provide these data here at 30 m resolution,...
thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas <2°) or very steep (i.e. “cliffs” >50°). We provide these data here at 30 m resolution,...
thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas <2°) or very steep (i.e. “cliffs” >50°). We provide these data here at 30 m resolution,...
thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas <2°) or very steep (i.e. “cliffs” >50°). We provide these data here at 30 m resolution,...
thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas <2°) or very steep (i.e. “cliffs” >50°). We provide these data here at 30 m resolution,...
thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas <2°) or very steep (i.e. “cliffs” >50°). We provide these data here at 30 m resolution,...
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It provides a measure of vulnerability based on climate velocity using a terrestrially-based analysis. The values range from 0 to 1 and are unitless, where Vvg = Ev x (1-Ag). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It represents terrestrially-defined adaptive capacity, where values run from 0 to 1.0 and is calculated as the complement of the degree of human modification (1-H). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
This dataset depicts riparian vegetation in the valley bottoms at 10-meter resolution for the Green River Basin Landscape Conservation Design (GRB LCD) project area covering portions of Utah, Wyoming and Colorado. Values are continuous and represent the portion of each 10-meter pixel comprised by woody riparian vegetation.
thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas 50°). We provide these data here at 30 m resolution, grouped by Landscape Conservation...
thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas 50°). We provide these data here at 30 m resolution, grouped by Landscape Conservation...
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It provides a measure of vulnerability based on climate velocity using a watershed-based analysis. The values range from 0 to 1 and are unitless, where Vvw = Ev x (1-Aw). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It is an exposure variable that represents the temperature change (degrees C) from baseline (1950-2000) to future (2061-2080).
thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas <2°) or very steep (i.e. “cliffs” >50°). We provide these data here at 30 m resolution,...
thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas <2°) or very steep (i.e. “cliffs” >50°). We provide these data here at 30 m resolution,...


map background search result map search result map Ecologically-relevant landforms for North Pacific LCC Ecologically-relevant landforms for South Atlantic LCC Ecologically-relevant landforms for Great Plains LCC Ecologically-relevant landforms for Baja LCC Ecologically-relevant landforms for Great Basin LCC Ecologically-relevant landforms for California LCC Ecologically-relevant landforms for Gulf Coast Plains and Ozarks LCC Ecologically-relevant landforms for North Atlantic LCC Ecologically-relevant landforms for Western Alaska LCC Vhg: terrestrially-defined vulnerability, biome velocity for Great Northern LCC Vtg: terrestrially-defined vulnerability, temperature change for Great Northern LCC Vtw: hydrologically-defined vulnerability, temperature change for Great Northern LCC Vvg: terrestrially-defined vulnerability, climate velocity for Great Northern LCC Vvw: hydrologically-defined vulnerability, climate velocity for Great Northern LCC Ecologically-relevant landforms for Upper Midwest and Great Lakes LCC Ecologically-relevant landforms for Plains and Prairie Potholes LCC Et: temperature change (degrees C) from baseline (1950-2000) to future (2061-2080) for Great Northern LCC Ecologically Relevant Landforms Vulnerability of Critical Fish Habitat to Oil and Gas Development in the Green River Basin Riparian vegetation within valley bottoms of the Green River Basin Derived from 2014 to 2015 NAIP Imagery Riparian vegetation within valley bottoms of the Green River Basin Derived from 2014 to 2015 NAIP Imagery Vulnerability of Critical Fish Habitat to Oil and Gas Development in the Green River Basin Ecologically Relevant Landforms Ecologically-relevant landforms for South Atlantic LCC Ecologically-relevant landforms for Western Alaska LCC Ecologically-relevant landforms for California LCC Ecologically-relevant landforms for Great Basin LCC Ecologically-relevant landforms for Great Plains LCC Ecologically-relevant landforms for Gulf Coast Plains and Ozarks LCC Ecologically-relevant landforms for Baja LCC Ecologically-relevant landforms for North Atlantic LCC Ecologically-relevant landforms for Plains and Prairie Potholes LCC Ecologically-relevant landforms for Upper Midwest and Great Lakes LCC Vvw: hydrologically-defined vulnerability, climate velocity for Great Northern LCC Vhg: terrestrially-defined vulnerability, biome velocity for Great Northern LCC Vtg: terrestrially-defined vulnerability, temperature change for Great Northern LCC Vvg: terrestrially-defined vulnerability, climate velocity for Great Northern LCC Et: temperature change (degrees C) from baseline (1950-2000) to future (2061-2080) for Great Northern LCC Ecologically-relevant landforms for North Pacific LCC Vtw: hydrologically-defined vulnerability, temperature change for Great Northern LCC