Skip to main content
Advanced Search

Filters: Tags: lidar (X) > Types: Downloadable (X)

246 results (13ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Hillshade of lidar-derived, bare earth digital elevation model, with 235-degree azimuth and 20-degree sun angle, 0.25m resolution, depicting earthquake effects following the August 24, 2014 South Napa Earthquake.
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Carlisle 30 x 60 minute quadrangle in Pennsylvania. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2019 and 2020 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
Attempts to stabilize the shore can greatly influence rates of shoreline change. Beach nourishment in particular will bias rates of observed shoreline change toward accretion or stability, even though the natural beach, in the absence of nourishment, would be eroding. Trembanis and Pilkey (1998) prepared a summary of identifiable beach nourishment projects in the Gulf Coast region that had been conducted before 1996. Those records were used to identify shoreline segments that had been influenced by beach nourishment. Supplemental information regarding beach nourishment was collected from agencies familiar with nourishment projects in the State. All records were compiled to create a GIS layer depicting the spatial...
thumbnail
Active channel as defined by remote sensing before (2010 and after (2011) a 40 year return period flood (December 2010) within the lower Virgin River, Nevada.
LiDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser rangefinding, GPS positioning and inertial measurement technologies; LiDAR instruments are able to make highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures and vegetation.
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) Program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc)...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 5-meter (m; 16.404 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc)...
thumbnail
This dataset is the survey area footprint for the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The survey footprint represents a LAS dataset of terrestrial light detection and ranging (lidar) of beach topography and multibeam sonar bathymetry to approximately 1 kilometer (0.62 miles) offshore, for an approximately 2.27 square kilometer surveyed area. The surveys were completed July 20 - July 23, 2020.
thumbnail
This dataset is a LAS dataset containing light detection and ranging (lidar) data and sonar data representing the beach and near-shore topography of Minnesota Point near the Superior Entry of Lake Superior, Duluth, Minnesota. The LAS data sets were used to create a digital elevation model (DEM) of the approximately 2.27 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne unit. Multibeam sonar data were collected using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Single-beam sonar data were collected using a Ceescope sonar unit. All elevation data were collected September 15-17, 2021. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M.,...
thumbnail
This dataset represents post-nourishment digital elevation models (DEMs) of the beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The Lidar DEM has a 1-meter (m; 3.28084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography. The topobathy DEMs have a 10-meter (m; 32.8084 feet) or a 5-meter (m; 16.4042 feet) cell size, and were created from a combined LAS dataset of lidar data representing the beach topography, and single-beam and multibeam sonar data representing the bathymetry. The survey area extends approximately 1 kilometers (0.62 miles) offshore, for an...
thumbnail
This dataset is a polygon shapefile delineating the footprint of bathymetric data collected in October, 2021 for an approximately 500 meter (m) reach of the Kalamazoo River upstream of Plainwell, Michigan (MI). Bathymetric data in the river channel were collected with a single beam sonar and Acoustic Current Doppler Profiler operated along 2 longitudinal transects and 48 cross-sectional transects, respectively.


map background search result map search result map Black Rail- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Illinois River, Brandon Pool 0.5m, Elwood Quad, Contours UMRR Dresden Reach Topobathy Hillshade raster (235-degree azimuth, 20-degree sun angle) derived from lidar data collected after the August 24, 2014 South Napa earthquake UMRR Mississippi River Navigation Pool 14 Bathymetry Footprint UMRR Mississippi River Navigation Pool 15 Bathymetry Footprint Beach Nourishment in the Gulf of Mexico ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2014 Active channel in the Lower Virgin River before and after a 40 yr flood (December 2010) ElevMHW: Elevation adjusted to local mean high water: Rhode Island National Wildlife Refuge, RI, 2014 Forest Canopy Gaps Identified by Lidar for Navigational Pool 8 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 13 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 24 of the Mississippi River Minnesota Point: Survey area of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, July 2020 Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Duluth Entry: 5-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 LAS dataset of lidar, single-beam, and multibeam sonar data collected of Minnesota Point near the Superior Entry of Lake Superior, Duluth, MN, September 2021 Digital elevation models (DEMs) of beach topography and near-shore bathymetry of Minnesota Point, near the Superior Entry of Lake Superior, Duluth, MN, September 2021 Footprint of bathymetry data collected for a Kalamazoo River Reference Reach upstream of Plainwell, Michigan, in 2021 Enhanced Terrain Imagery of the Carlisle 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Footprint of bathymetry data collected for a Kalamazoo River Reference Reach upstream of Plainwell, Michigan, in 2021 Illinois River, Brandon Pool 0.5m, Elwood Quad, Contours Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Duluth Entry: 5-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Minnesota Point: Survey area of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, July 2020 LAS dataset of lidar, single-beam, and multibeam sonar data collected of Minnesota Point near the Superior Entry of Lake Superior, Duluth, MN, September 2021 Digital elevation models (DEMs) of beach topography and near-shore bathymetry of Minnesota Point, near the Superior Entry of Lake Superior, Duluth, MN, September 2021 UMRR Dresden Reach Topobathy Forest Canopy Gaps Identified by Lidar for Navigational Pool 8 of the Mississippi River UMRR Mississippi River Navigation Pool 14 Bathymetry Footprint Broken Forest Canopy Identified by Lidar for the Navigational Pool 24 of the Mississippi River ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2014 Broken Forest Canopy Identified by Lidar for the Navigational Pool 13 of the Mississippi River Active channel in the Lower Virgin River before and after a 40 yr flood (December 2010) ElevMHW: Elevation adjusted to local mean high water: Rhode Island National Wildlife Refuge, RI, 2014 Enhanced Terrain Imagery of the Carlisle 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Black Rail- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Beach Nourishment in the Gulf of Mexico