Skip to main content
Advanced Search

Filters: Types: Report (X) > Tags: {"type":"Label","scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/Project/OrganizationName"} (X)

6 results (305ms)   

View Results as: JSON ATOM CSV
The global mean surface temperature increased 0.85°C during the period 1880 – 2012. Some climate models predict an additional warming of up 2 to 4 ◦ C over the next 100 years for the primary breeding grounds for North American ducks. Such an increase has been predicted to reduce mid - continent breeding duck populations by >70%. Managing continental duck populations in the face of climate change requires understanding how waterfowl have responded to historical spatio - temporal climatic variation. However, such responses to climate may be obscured by how ducks respond to variation in land cover. We estimated effects of climate on settlement patterns of breeding ducks in the Prairie - Parkland Region (PPR), boreal...
Recent extreme floods on the Mississippi and Missouri Rivers have motivated expansion of floodplain conservation lands. Within Missouri there are more than 85,000 acres of public conservation lands in large-river floodplains. Floodplain lands are highly dynamic and challenging to manage, particularly as future climatic conditions may be highly variable. These lands have the potential to provide valuable ecosystem services like provision of habitat, nutrient processing, carbon sequestration, and flood-water storage that produce economic values in terms of recreational spending, improved water quality, and decreased flood hazards. However, floodplain managers may need tools to help them understand nonstationary conditions...
The responses of individual species to environmental changes can be manifested at multiple levels that range from individual-level (i.e., behavioral responses) to population-level (i.e., demographic) impacts. Major environmental changes that ultimately result in population level impacts are often first detected as individual-level responses. For example, herbivores respond to limited forage availability during drought periods by increasing the duration of foraging periods and expanding home range areas to compensate for the reduction in forage. However, if the individual-level responses are not sufficient to compensate for reduced forage availability, reduced survival and reproductive rates may result. We studied...
The responses of individual species to environmental changes can be manifested at multiple levels that range from individual-level (i.e., behavioral responses) to population-level (i.e., demographic) impacts. Major environmental changes that ultimately result in population level impacts are often first detected as individual-level responses. For example, herbivores respond to limited forage availability during drought periods by increasing the duration of foraging periods and expanding home range areas to compensate for the reduction in forage. However, if the individual-level responses are not sufficient to compensate for reduced forage availability, reduced survival and reproductive rates may result. We studied...
Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We worked with a team of biologists and managers to identify management actions aimed at mitigating climate impacts to WBP. Identified actions were spatially allocated across...
With the extensive loss and fragmentation of most native habitats, connectivity has become increasingly important for sustaining wildlife populations and communities. Connectivity can be defined as the extent to which the landscape facilitates or impedes the movement of organisms among patches of habitat. The goal of this project was to evaluate terrestrial connectivity across the South Central United States. We addressed this goal using a variety of approaches, including evaluating connectivity of major habitats (grasslands and forests), predicting future changes in landscape connectivity for grassland species under future land-use change scenarios, assessing terrestrial vertebrate diversity in relation to habitat...