Filters: Date Range: {"choice":"year"} (X) > Extensions: OGC Web Service (X)
22 results (216ms)
Filters
Date Types (for Date Range)
Types Contacts
Categories Tag Types
|
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate ocean circulation, waves, and sediment transport to study barrier island breaches that occurred during Hurricane Matthew (2016) near Matazas FL, and Hurricane Sandy (2012) at Fire Island, NY. Hurricane Sandy was a Saffir-Simpson Category 2 hurricane that transited the Western Atlantic Ocean relatively far offshore of the US East Coast for five days until turning west to make landfall in New Jersey on 29 October 2012, causing extreme coastal erosion and flooding with destruction to residences and infrastructure along the East coast, particularly in the New York Bight. Maximum...
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate three-dimensional hydrodynamics and waves to study salinity intrusion in the Delaware Bay estuary for 2016, 2018, 2021. Salinity intrusion in coastal systems is due in part to extreme events like drought or low-pressure storms and longer-term sea level rise, threatening economic infrastructure and ecological health. Along the eastern seaboard of the United States, approximately 13 million people rely on the water resources of the Delaware River basin, which is actively managed to suppress the salt front (or ~0.52 daily averaged psu line) through river discharge targets. However,...
Categories: Data;
Types: Map Service,
NetCDF OPeNDAP Service,
OGC WMS Layer;
Tags: Earth Science > Oceans > Ocean Circulation > Ocean Currents,
Earth Science > Oceans > Ocean Temperature > Potential Temperature,
Earth Science > Oceans > Salinity/Density > Salinity,
Earth Science > Oceans > Sea Surface Topography > Sea Surface Height,
Earth Science Services > Models > Weather Research/Forecast Models,
Transport of material in an estuary is important for water quality and hazards concern. We studied these processes in the Hudson River Estuary, located along the northeast coast of the U.S. using the COAWST numerical modeling system. A skill assessment of the COAWST model for the 3-D salinity structure of the estuary has been successfully studied in the past, and the present research extended that understanding to look at both physical and numerical mixing. The model grid extends from the south at the Battery, NY to the north in Troy, NY. The simulation is performed from March 25 to July 11, 2005 (111 days). For more information see: https://doi.org/10.5066/P95E8LAS.
Categories: Data;
Types: Map Service,
NetCDF OPeNDAP Service,
OGC WMS Layer;
Tags: CMG_Portal,
Earth Science > Human Dimensions > Natural Hazards > Floods,
Earth Science > Oceans > Marine Sediments >Sediment Transport,
Earth Science > Oceans > Ocean Circulation > Ocean Currents,
Earth Science > Oceans > Ocean Temperature > Potential Temperature,
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2019; Warner and others, 2010) model was used to simulate ocean circulation, waves, and sediment transport in Cape Cod Bay, MA. Larger scale simulations of the US East Coast (Warner and Kalra, 2022) were used to drive numerical grids covering the Gulf of Maine (~1000m resolution) with a two-way nested downscaled region into Cape Cod Bay (~250m resolution). Results were analyzed to investigate bay-scale dynamics of net transport, seafloor elevation changes, and net sediment fluxes. Those results were further used to drive a coastal scale grid that stretched along ~17km of the coast from the Cape Cod Canal to Sandy Neck Beach. This nearshore...
Categories: Data;
Types: Map Service,
NetCDF OPeNDAP Service,
OGC WMS Layer;
Tags: CMG_Portal,
Earth Science > Human Dimensions > Natural Hazards > Floods,
Earth Science > Oceans > Marine Sediments >Sediment Transport,
Earth Science > Oceans > Ocean Circulation > Ocean Currents,
Earth Science > Oceans > Ocean Temperature > Potential Temperature,
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate three-dimensional hydrodynamics and waves to study salinity intrusion in the Delaware Bay estuary for 2019. Salinity intrusion in coastal systems is due in part to extreme events like drought or low-pressure storms and longer-term sea level rise, threatening economic infrastructure and ecological health. Along the eastern seaboard of the United States, approximately 13 million people rely on the water resources of the Delaware River basin, which is actively managed to suppress the salt front (or ~0.52 daily averaged psu line) through river discharge targets. However, river discharge...
Categories: Data;
Types: Map Service,
NetCDF OPeNDAP Service,
OGC WMS Layer;
Tags: Earth Science > Oceans > Ocean Circulation > Ocean Currents,
Earth Science > Oceans > Ocean Temperature > Potential Temperature,
Earth Science > Oceans > Salinity/Density > Salinity,
Earth Science > Oceans > Sea Surface Topography > Sea Surface Height,
Earth Science Services > Models > Weather Research/Forecast Models,
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate three-dimensional hydrodynamics and waves to study salinity intrusion in the Delaware Bay estuary for 2019. Salinity intrusion in coastal systems is due in part to extreme events like drought or low-pressure storms and longer-term sea level rise, threatening economic infrastructure and ecological health. Along the eastern seaboard of the United States, approximately 13 million people rely on the water resources of the Delaware River basin, which is actively managed to suppress the salt front (or ~0.52 daily averaged psu line) through river discharge targets. However, river discharge...
Categories: Data;
Types: Map Service,
NetCDF OPeNDAP Service,
OGC WMS Layer;
Tags: Earth Science > Oceans > Ocean Circulation > Ocean Currents,
Earth Science > Oceans > Ocean Temperature > Potential Temperature,
Earth Science > Oceans > Salinity/Density > Salinity,
Earth Science > Oceans > Sea Surface Topography > Sea Surface Height,
Earth Science Services > Models > Weather Research/Forecast Models,
The GAP National Terrestrial Ecosystems - Ver 3.0 is a 2011 update of the National Gap Analysis Project Land Cover Data - Version 2.2 for the conterminous U.S. The GAP National Terrestrial Ecosystems - Version 3.0 represents a highly thematically detailed land cover map of the U.S. The map legend includes types described by NatureServe's Ecological Systems Classification (Comer et al. 2002) as well as land use classes described in the National Land Cover Dataset 2011 (Homer et al. 2015). These data cover the entire continental U.S. and are a continuous data layer. These raster data have a 30 m x 30 m cell resolution. GAP used the best information available to create the land cover data; however GAP seeks to improve...
Categories: Data;
Types: Map Service,
OGC WMS Layer;
Tags: Alabama,
Alaska,
Appalachian,
Arizona,
Arkansas,
This dataset represents a species habitat distribution map for Gambel's Quail (Callipepla gambelii) within the conterminous United States (CONUS) based on 2001 ground conditions. This habitat map was created by applying a deductive habitat model to remotely-sensed data layers within the species' known range. See Gap Analysis Project Species Habitat Maps for more information regarding model process and user constraints. For species specific model information, see the attached Species Habitat Model Report.
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate three-dimensional hydrodynamics and waves to study salinity intrusion in the Delaware Bay estuary for 2019. Salinity intrusion in coastal systems is due in part to extreme events like drought or low-pressure storms and longer-term sea level rise, threatening economic infrastructure and ecological health. Along the eastern seaboard of the United States, approximately 13 million people rely on the water resources of the Delaware River basin, which is actively managed to suppress the salt front (or ~0.52 daily averaged psu line) through river discharge targets. However, river discharge...
Categories: Data;
Types: Map Service,
NetCDF OPeNDAP Service,
OGC WMS Layer;
Tags: Earth Science > Oceans > Ocean Circulation > Ocean Currents,
Earth Science > Oceans > Ocean Temperature > Potential Temperature,
Earth Science > Oceans > Salinity/Density > Salinity,
Earth Science > Oceans > Sea Surface Topography > Sea Surface Height,
Earth Science Services > Models > Weather Research/Forecast Models,
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate three-dimensional hydrodynamics and waves to study salinity intrusion in the Delaware Bay estuary for 2016, 2018, 2021. Salinity intrusion in coastal systems is due in part to extreme events like drought or low-pressure storms and longer-term sea level rise, threatening economic infrastructure and ecological health. Along the eastern seaboard of the United States, approximately 13 million people rely on the water resources of the Delaware River basin, which is actively managed to suppress the salt front (or ~0.52 daily averaged psu line) through river discharge targets. However,...
Categories: Data;
Types: Map Service,
NetCDF OPeNDAP Service,
OGC WMS Layer;
Tags: Earth Science > Oceans > Ocean Circulation > Ocean Currents,
Earth Science > Oceans > Ocean Temperature > Potential Temperature,
Earth Science > Oceans > Salinity/Density > Salinity,
Earth Science > Oceans > Sea Surface Topography > Sea Surface Height,
Earth Science Services > Models > Weather Research/Forecast Models,
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate three-dimensional hydrodynamics and waves to study salinity intrusion in the Delaware Bay estuary for 2016, 2018, 2021. Salinity intrusion in coastal systems is due in part to extreme events like drought or low-pressure storms and longer-term sea level rise, threatening economic infrastructure and ecological health. Along the eastern seaboard of the United States, approximately 13 million people rely on the water resources of the Delaware River basin, which is actively managed to suppress the salt front (or ~0.52 daily averaged psu line) through river discharge targets. However,...
Categories: Data;
Types: Map Service,
NetCDF OPeNDAP Service,
OGC WMS Layer;
Tags: Earth Science > Oceans > Ocean Circulation > Ocean Currents,
Earth Science > Oceans > Ocean Temperature > Potential Temperature,
Earth Science > Oceans > Salinity/Density > Salinity,
Earth Science > Oceans > Sea Surface Topography > Sea Surface Height,
Earth Science Services > Models > Weather Research/Forecast Models,
![]() The USGS 3D Elevation Program (3DEP) Datasets from The National Map are the primary elevation data product produced and distributed by the USGS. The 3DEP program provides a variety of resolution raster elevation data of the conterminous United States, Alaska, Hawaii, and the island territories. Some of the data sets such as the 1/3rd arc-second and 1 arc-second data set are derived from diverse source data sets that are processed to a specification with a consistent resolution, coordinate system, elevation units, and horizontal and vertical datums. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the...
The COAWST modeling system has been used to simulate ocean and wave processes along the of US East Coast and Gulf of Mexico. The grid has a horizontal resolution of approximately 5km and is resolved with 16 vertical terrain following levels. The model has been executed on a daily basis since 2010 with outputs written every hour. Data access is available through a Globus access portal here: https://app.globus.org/file-manager?origin_id=2e58c429-d1cf-4808-85a7-0d8214a4547e&origin_path=%2F References cited: Warner, J.C., Armstrong, Brandy, He, Ruoying, and Zambon, J.B., 2010, Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system: Ocean Modelling, v. 35, issue 3, p. 230-244. ...
Categories: Data;
Types: Map Service,
NetCDF OPeNDAP Service,
OGC WMS Layer;
Tags: CMG_Portal,
Earth Science > Human Dimensions > Natural Hazards > Floods,
Earth Science > Oceans > Marine Sediments >Sediment Transport,
Earth Science > Oceans > Ocean Circulation > Ocean Currents,
Earth Science > Oceans > Ocean Temperature > Potential Temperature,
This dataset represents a species habitat distribution map for Black Mountain Salamander (Desmognathus welteri) within the conterminous United States (CONUS) based on 2001 ground conditions. This habitat map was created by applying a deductive habitat model to remotely-sensed data layers within the species' known range. See Gap Analysis Project Species Habitat Maps for more information regarding model process and user constraints. For species specific model information, see the attached Species Habitat Model Report.
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2019; Warner and others, 2010) model was used to simulate ocean circulation, waves, and sediment transport in Cape Cod Bay, MA. Larger scale simulations of the US East Coast (Warner and Kalra, 2022) were used to drive numerical grids covering the Gulf of Maine (~1000m resolution) with a two-way nested downscaled region into Cape Cod Bay (~250m resolution). Results were analyzed to investigate bay-scale dynamics of net transport, seafloor elevation changes, and net sediment fluxes. Those results were further used to drive a coastal scale grid that stretched along ~17km of the coast from the Cape Cod Canal to Sandy Neck Beach. This nearshore...
Categories: Data;
Types: Map Service,
NetCDF OPeNDAP Service,
OGC WMS Layer;
Tags: CMG_Portal,
Earth Science > Human Dimensions > Natural Hazards > Floods,
Earth Science > Oceans > Marine Sediments >Sediment Transport,
Earth Science > Oceans > Ocean Circulation > Ocean Currents,
Earth Science > Oceans > Ocean Temperature > Potential Temperature,
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate ocean circulation, waves, and sediment transport to study barrier island breaches that occurred during Hurricane Matthew (2016) near Matazas FL, and Hurricane Sandy (2012) at Fire Island, NY. Hurricane Sandy was a Saffir-Simpson Category 2 hurricane that transited the Western Atlantic Ocean relatively far offshore of the US East Coast for five days until turning west to make landfall in New Jersey on 29 October 2012, causing extreme coastal erosion and flooding with destruction to residences and infrastructure along the East coast, particularly in the New York Bight. Maximum...
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate ocean circulation, waves, and sediment transport to study barrier island breaches that occurred during Hurricane Matthew (2016) near Matazas FL, and Hurricane Sandy (2012) at Fire Island, NY. Hurricane Sandy was a Saffir-Simpson Category 2 hurricane that transited the Western Atlantic Ocean relatively far offshore of the US East Coast for five days until turning west to make landfall in New Jersey on 29 October 2012, causing extreme coastal erosion and flooding with destruction to residences and infrastructure along the East coast, particularly in the New York Bight. Maximum...
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate ocean circulation, waves, and sediment transport to study barrier island breaches that occurred during Hurricane Matthew (2016) near Matazas FL, and Hurricane Sandy (2012) at Fire Island, NY. Hurricane Sandy was a Saffir-Simpson Category 2 hurricane that transited the Western Atlantic Ocean relatively far offshore of the US East Coast for five days until turning west to make landfall in New Jersey on 29 October 2012, causing extreme coastal erosion and flooding with destruction to residences and infrastructure along the East coast, particularly in the New York Bight. Maximum...
This dataset represents a species known range extent for Streamside Salamander (Ambystoma barbouri) within the conterminous United States (CONUS) based on 2001 ground conditions. This range map was created by attributing sub-watershed polygons with information of a species' presence, origin, seasonal and reproductive use. See Gap Analysis Project Species Range Maps for more information regarding data creation and user constraints. For species specific range information, see the attached Range data.
This dataset represents a species habitat distribution map for Allen's Big-eared Bat (Idionycteris phyllotis) within the conterminous United States (CONUS) based on 2001 ground conditions. This habitat map was created by applying a deductive habitat model to remotely-sensed data layers within the species' known range. See Gap Analysis Project Species Habitat Maps for more information regarding model process and user constraints. For species specific model information, see the attached Species Habitat Model Report.
|
![]() |