Skip to main content
Advanced Search

Filters: Date Range: {"choice":"year"} (X) > Tags: {"type":"Place"} (X) > Types: Downloadable (X) > Types: Shapefile (X)

560 results (86ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Place )
View Results as: JSON ATOM CSV
thumbnail
Ground-based discrete snowpack measurements were collected during winter field campaigns starting in 2020. These data were collected as part of the U.S. Geological Survey (USGS) Next Generation Water Observing System (NGWOS) Upper Colorado River Basin project focusing on the relation between snow dynamics and water resources. This data release consists of three child items. Each child item contains snow depth, snow density, snow temperature, or snow water equivalent values measured discretely in the field. The data are provided in comma separated value (CSV) files.
thumbnail
Surficial geology (geo7_2ag).
Categories: Data, pre-SM502.8; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Aaiun-Tarfaya Basin, Province 2066, Abu Gharadiq Basin, Province 2038, Africa, Age, Amhara Plateau, Province 7161, All tags...
thumbnail
The Assessment Unit is the fundamental unit used in the National Assessment Project for the assessment of undiscovered oil and gas resources. The Assessment Unit is defined within the context of the higher-level Total Petroleum System. The Assessment Unit is shown herein as a geographic boundary interpreted, defined, and mapped by the geologist responsible for the province and incorporates a set of known or postulated oil and (or) gas accumulations sharing similar geologic, geographic, and temporal properties within the Total Petroleum System, such as source rock, timing, migration pathways, trapping mechanism, and hydrocarbon type. The Assessment Unit boundary is defined geologically as the limits of the geologic...
The Caribbean region is part of World Energy Assessment region 6 (Central and South America). A fundamental task in the assessment is to map the locations and type of production for existing oil and gas fields. The Petroconsultants database is the only available database that has coverage for the Caribbean region. Oil and gas field symbols represent field center-points and are published with permission from Petroconsultants International Data Corporation, 2002 database.
Categories: Data, pre-SM502.8; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: AG, AI, AN, AW, Anguilla, All tags...
thumbnail
This coverage includes arcs, polygons and polygon labels that describe U.S. Geological Survey defined geologic provinces of the Africa. Each province has a set of geologic characteristics distinguishing it from surrounding provinces. These characteristics may include the dominant lithologies, the age of the strata, and the structural style. Some provinces include multiple genetically-related basins. Offshore province boundaries are generally defined by the 2000 meter bathymetric contour, but where appropriate are defined by the 4000 meter bathymetric contour. In some cases province boundaries are delineated by political boundaries, as in the case of The United States and Canada, because United States petroleum resources...
Categories: Data, pre-SM502.8; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Aaiun-Tarfaya Basin, Province 2066, Abu Gharadiq Basin, Province 2038, Africa, Amhara Plateau, Province 7161, Atlas Basin, Province 2062, All tags...
thumbnail
Attempts to stabilize the shore can greatly influence rates of shoreline change. Beach nourishment in particular will bias rates of observed shoreline change toward accretion or stability, even though the natural beach, in the absence of nourishment, would be eroding. Trembanis and Pilkey (1998) prepared a summary of identifiable beach nourishment projects in the Gulf Coast region that had been conducted before 1996. Those records were used to identify shoreline segments that had been influenced by beach nourishment. Supplemental information regarding beach nourishment was collected from agencies familiar with nourishment projects in the State. All records were compiled to create a GIS layer depicting the spatial...
thumbnail
A sensitivity analysis of groundwater-recharge estimates from a water-budget model was completed for the islands of Oahu and Maui, Hawaii (Johnson and others, 2023). Results of the sensitivity analysis were used to quantify the relative importance of selected model parameters to recharge estimates for three moisture zones (dry, mesic, and wet) on Oahu and Maui. This shapefile contains the boundaries of the moisture zones and boundaries of the model subareas that were used in the model simulations for Oahu. The shapefile attribute information includes the names of the land-cover types assigned to model subareas and the mean annual recharge values determined for the model subareas for the baseline scenario of the...
thumbnail
PROBLEM The valley‐fill aquifer in the lower Fall Creek valley (designated as aquifer 4, fig. 1), within the Towns of Dryden and Groton, was mapped by Miller (2000) and identified as one of 17 unconsolidated aquifers in Tompkins County that need to be studied in more detail. The east end of the valley (near the Tompkins and Cortland County border) is on the backside of a large morainal plug, which is part of the Valley Heads Moraine. A large system of springs discharge from the backside of the moraine and forms part of the headwaters to Fall Creek. The valley‐fill aquifer thins and pinches out to the west (figs. 1 and 2)— where the valley is floored by bedrock and becomes a “hanging valley” to Cayuga Lake trough....
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
This digital dataset consists of monthly climate data from the Basin Characterization Model v8 (BCMv8) for the updated Central Valley Hydrologic Model (CVHM2) for water years 1922 to 2019. The BCMv8 data are available in a separate data release titled "The Basin Characterization Model - A regional water balance software package (BCMv8) data release and model archive for hydrologic California, water years 1896-2020". The data were modified by: (1) extracting the data from the data source for the relevant model domain and times, and (2) rescaling the 270-meter BCMv8 grid to the small watersheds that contribute boundary flow to the CVHM2 model for the hydrologic variables recharge and runoff. The three data pieces...
thumbnail
Dataset contains the groundwater well locations and water-level measurements for 273 wells measured during a water-level survey of the Sparta-Memphis aquifer in Arkansas, January through June 2015. Well-location and water-level data is publicly available from the U.S. Geological Survey's National Water Information System.
thumbnail
Observations and subtle shifts of vegetation communities in western Lake Erie have USGS researchers concerned about the potential for Grass Carp to alter these vegetation communities. Broad-scale surveys of vegetation using remote sensing and GIS mapping, coupled with on-the-ground samples in key locations will permit assessment of the effect Grass Carp may have already had on aquatic vegetation communities and establish baseline conditions for assessing future effects. Existing aerial imagery was used with object-based image analysis to detect and map aquatic vegetation in the western basin of Lake Erie.
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Using the horizontal-to-vertical spectral-ratio (HVSR) method, we infer regolith thickness (i.e., depth to bedrock) throughout the Farmington River Watershed, CT, USA. Between Nov. 2019 and Nov. 2020, MOHO Tromino Model TEP-3C (MOHO, S.R.L.) three-component seismometers collected passive seismic recordings along the Farmington River and the upstream West Branch of Salmon Brook. From these recordings, we derived resonance frequencies using the GRILLA software (MOHO, S.R.L.), and then inferred potential regolith thicknesses based on likely shear wave velocities, Vs, intrinsic to the underlying sediment. Three potential shear wave velocities (Vs = 300m/s, 337m/s, 362 m/s) were considered for Farmington River watershed...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
South of Interstate 40 mule deer reside in Game Management Units (GMU) 8 and 6B in Arizona. The herd summers in high-elevation open meadows and ponderosa pine habitat southwest of Flagstaff, Arizona. In late October, the herd migrates west to lower elevation pinyon-juniper and shrub habitats near the junction of Interstate 40 and U.S. Highway 89. With funding support by the U.S. Department of the Interior (USDI) through Secretarial Order 3362, research on this herd’s migration began in February 2020. Additional GPS collars were deployed in January 2022 with support from the U.S. Forest Service, Mule Deer Foundation, and other partners. Primary threats to the herd’s migration involve high volume roads including Interstate...


map background search result map search result map Beach Nourishment in the Gulf of Mexico Ports of the United States Lake Erie, Western Basin Aquatic Vegetation data Sparta-Memphis aquifer well point dataset, in Arkansas, January-June 2015 Oil and Gas Fields of the Caribbean Region, 2004 (fld6bg) Surficial geology of Africa (geo7_2ag) Geologic Provinces of Africa, 2000 (prv7_2ag) Geohydrology of the Valley‐fill Aquifer in the Lower Fall Creek Valley, Town of Dryden, Tompkins County, New York Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 Central Valley Hydrologic Model version 2 (CVHM2): Small Watershed Climate Data (Recharge, Runoff) Arizona Mule Deer South of I 40 Stopovers NGWOS Ground Based Discrete Snowpack Measurements Passive seismic depth to bedrock data collected along streams of the Farmington River watershed, CT, USA A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s Long-term shoreline change rates for the Virginia coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Virginia generated to calculate short-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Baseline for the North Carolina coastal region from Cape Hatteras to Cape Lookout (NCcentral) Long and short-term shoreline change rate transects for the northern North Carolina coastal region (NCnorth), calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the island of Oahu, Hawaii USGS National Assessment of Oil and Gas Project - Unconventional Assessment Units from 2000 to 2011 Passive seismic depth to bedrock data collected along streams of the Farmington River watershed, CT, USA Geohydrology of the Valley‐fill Aquifer in the Lower Fall Creek Valley, Town of Dryden, Tompkins County, New York Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the island of Oahu, Hawaii Lake Erie, Western Basin Aquatic Vegetation data Baseline for the North Carolina coastal region from Cape Hatteras to Cape Lookout (NCcentral) Long-term shoreline change rates for the Virginia coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s NGWOS Ground Based Discrete Snowpack Measurements Sparta-Memphis aquifer well point dataset, in Arkansas, January-June 2015 Central Valley Hydrologic Model version 2 (CVHM2): Small Watershed Climate Data (Recharge, Runoff) Beach Nourishment in the Gulf of Mexico Oil and Gas Fields of the Caribbean Region, 2004 (fld6bg) USGS National Assessment of Oil and Gas Project - Unconventional Assessment Units from 2000 to 2011 Ports of the United States Geologic Provinces of Africa, 2000 (prv7_2ag) Surficial geology of Africa (geo7_2ag)