Skip to main content
Advanced Search

Filters: System Type: Data Release (X) > Categories: NOT Data Release - In Progress (X) > Tags: {"scheme":"Geographic Names Information System"} (X) > Extensions: Raster (X)

6 results (31ms)   

View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey (USGS) computed rasters of pre-solved values for the watersheds draining to the pixel delineation point representing the watershed's percent forested land cover from the National Land Cover Dataset (NLCD) 2016 data (land cover values 41-43). These values, which cover the conterminous United States at a scale of 30m pixel size, will be served in the National StreamStats Fire-Hydrology application to describe delineated watersheds ( https://streamstats.usgs.gov/ ). The StreamStats application provides access to spatial analysis tools that are useful for water-resources planning and management, and for engineering and design purposes. The map-based user interface can be used to delineate...
thumbnail
The U.S. Geological Survey (USGS) computed rasters of pre-solved values for the watersheds draining to the pixel delineation point representing the watershed's mean maximum and minimum January temperature from PRISM 1981-2010 4km data (resampled to 30m resolution). These values, which cover the conterminous United States, will be served in the National StreamStats Fire-Hydrology application to describe delineated watersheds (https://streamstats.usgs.gov/). The StreamStats application provides access to spatial analysis tools that are useful for water-resources planning and management, and for engineering and design purposes. The map-based user interface can be used to delineate drainage areas, to retrieve basin...
thumbnail
This dataset contains a bare earth digital elevation model (DEM), with a 0.5-square-meter (m2) cell size, of the Cottonwood Lake Study Area, Stutsman County, North Dakota. The DEM was based primarily on airborne lidar data acquired by Fugro Horizons of Rapid City, South Dakota, and made into a DEM by USGS personnel using the ArcGIS extension LP360 (QCoherent Software, 2013). Additional DEM processing to incorporate the bathymetry of study wetlands was done using survey-grade global positioning system (GPS) data collected by soundings of the bottom of each wetland. Through these steps, a continuous elevation model representing both the surrounding uplands and wetland basins was produced for the site (Mushet and Scherff...
thumbnail
In cooperation with the South Carolina Department of Transportation, the U.S. Geological Survey prepared a geospatial raster dataset describing impervious surface in the SC StreamStats study area derived from the 30m resolution National Land Cover Dataset (NLCD) 2019. This layer, which covers the SC StreamStats study area, has been resampled from the source resolution to a scale of 30ft pixels and reprojected to the common projection of the other project data layers (SC State Plane NAD 1983 International Feet WKID 2273). It will be served as part of the SC StreamStats application (https://streamstats.usgs.gov) to describe delineated watersheds. The StreamStats application provides access to spatial analytical tools...
thumbnail
The U.S. Geological Survey (USGS) computed rasters of pre-solved values for the watersheds draining to the pixel delineation point representing the watershed's mean maximum 30-minute precipitation occurring on average once in 2 years from NOAA Atlas 14. These values will be served in the National StreamStats Fire-Hydrology application to describe delineated watersheds ( https://streamstats.usgs.gov/ ). The StreamStats application provides access to spatial analysis tools that are useful for water-resources planning and management, and for engineering and design purposes. The map-based user interface can be used to delineate drainage areas, to retrieve basin characteristics, to estimate flow statistics, and more.
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Raster; Tags: Alabama, Arizona, Arkansas, California, Climatology, All tags...
thumbnail
This digital terrain model represents historical elevations along the valley of the North Fork Toutle River upstream of its confluence with the Green River in Cowlitz and Skamania Counties, Washington. Most elevations were derived from U.S. Geological Survey 1:62,500 scale topographic quadrangle maps published from 1953 to 1958 that were derived from aerial photographs taken in 1951 and 1952. Elevations representing the bed of Spirit Lake, at the head of the valley, were derived from a bathymetric map based on survey data from 1974. Elevations are in units of meters and have been adjusted to the North American Vertical Datum of 1988.


    map background search result map search result map Cottonwood Lake Study Area – Digital Elevation Model with Topobathy Pre-computed mean maximum 30-minute 2-year precipitation rasters from the 43 available conterminous states, for use in the StreamStats Fire-Hydrology application 2021 Pre-computed mean January maximum and minimum temperature rasters from PRISM 1981-2010 from the conterminous United States, for the StreamStats Fire-Hydrology application 2021 Precomputed Percent Forested-Area Rasters Derived from NLCD 2016 in Support of the StreamStats Fire-Hydrology Application, Conterminous United States Impervious Land Cover Raster Derived from the National Land Cover Dataset (NLCD) 2019 for South Carolina StreamStats Digital terrain model of upper North Fork Toutle River valley, Washington, derived from historical topographic maps Cottonwood Lake Study Area – Digital Elevation Model with Topobathy Digital terrain model of upper North Fork Toutle River valley, Washington, derived from historical topographic maps Impervious Land Cover Raster Derived from the National Land Cover Dataset (NLCD) 2019 for South Carolina StreamStats Pre-computed mean maximum 30-minute 2-year precipitation rasters from the 43 available conterminous states, for use in the StreamStats Fire-Hydrology application 2021 Pre-computed mean January maximum and minimum temperature rasters from PRISM 1981-2010 from the conterminous United States, for the StreamStats Fire-Hydrology application 2021 Precomputed Percent Forested-Area Rasters Derived from NLCD 2016 in Support of the StreamStats Fire-Hydrology Application, Conterminous United States