Skip to main content
Advanced Search

Filters: Tags: {"scheme":"None"} (X) > partyWithName: Lisamarie Windham-Myers (X)

4 results (51ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset consists of raster geotiff outputs from modeling vertical accretion and carbon accumulation in the Nisqually River Delta, Washington, USA. These rasters represent projections of future habitat type, change in surface elevation above Mean Sea Level, and total sediment carbon accumulation since 2011 in coastal wetland habitats. Projections were generated in 20-year increments for 100 years for five amounts of sea-level rise, three amounts of suspended sediment concentrations, and two alternative configurations of the U.S. Interstate-5 causeway as it crosses the Nisqually River to either prevent or allow inland habitat migration (a total of 30 scenarios). The full methods and results are described in detail...
thumbnail
This dataset consists of raster geotiff outputs from modeling vertical accretion and carbon accumulation in the Nisqually River Delta, Washington, USA. These rasters represent projections of future habitat type, change in surface elevation above Mean Sea Level, and total sediment carbon accumulation since 2011 in coastal wetland habitats. Projections were generated in 20-year increments for 100 years for five amounts of sea-level rise, three amounts of suspended sediment concentrations, and two alternative configurations of the U.S. Interstate-5 causeway as it crosses the Nisqually River to either prevent or allow inland habitat migration (a total of 30 scenarios). The full methods and results are described in detail...
thumbnail
These datasets represent a revised national scale estimate of wetland soil carbon stock assessments by improving representation of soil organic carbon densities. This assessment is based on a three-step approach to harmonize survey and point-based data for predicting soil organic carbon density from percent organic carbon alone (or percent organic matter, with conversion), when reliable dry bulk density information is not available. Given issues with survey-level extrapolation of soil pedons into discontinuous hydric soils, quantile, segmented data analysis provides a more accurate spatially explicit soil organic carbon density product. These modeled data leverage spatial and statistical distributions of soil organic...
thumbnail
This dataset consists of raster geotiff outputs from modeling vertical accretion and carbon accumulation in the Nisqually River Delta, Washington, USA. These rasters represent projections of future habitat type, change in surface elevation above Mean Sea Level, and total sediment carbon accumulation since 2011 in coastal wetland habitats. Projections were generated in 20-year increments for 100 years for five amounts of sea-level rise, three amounts of suspended sediment concentrations, and two alternative configurations of the U.S. Interstate-5 causeway as it crosses the Nisqually River to either prevent or allow inland habitat migration (a total of 30 scenarios). The full methods and results are described in detail...


    map background search result map search result map Projected future habitat of coastal wetlands in the Nisqually River Delta, Washington Projected future carbon accumulation of coastal wetlands in the Nisqually River Delta, Washington Projected future elevation change of coastal wetlands in the Nisqually River Delta, Washington Harmonizing wetland soil organic carbon datasets to improve spatial representation of 2011 soil carbon stocks in the conterminous United States Projected future habitat of coastal wetlands in the Nisqually River Delta, Washington Projected future carbon accumulation of coastal wetlands in the Nisqually River Delta, Washington Projected future elevation change of coastal wetlands in the Nisqually River Delta, Washington Harmonizing wetland soil organic carbon datasets to improve spatial representation of 2011 soil carbon stocks in the conterminous United States