Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/Great%20Lakes%20Restoration%20Initiative/SiGLProjectObjective","name":"assessment"} (X)

10 results (76ms)   

View Results as: JSON ATOM CSV
thumbnail
Description of Work U.S. Geological Survey (USGS) will provide easily accessible, centrally located, USGS biological, water resources, geological, and geospatial datasets for Great Lakes basin restoration activities coordinated with GLOS. Managers, partners and the public will be able to readily access this information in usable interactive formats to help plan and implement restoration activities. Building tools and infrastructure to support standard data access, efficient data discovery and dynamic mapping of watersheds and their hydrologic properties. Developing decision support tools to enhance scientific investigation or disseminate project findings, for example integrating hydrologic models with real-time...
thumbnail
Description of Work Participation on the Lake Erie Lakewide Management Plan Workgroup and related subcommittees such as toxics, sources and loads, nutrients, and biodiversity. Attend meetings and conferences associated with LE LAMP activities. This includes The Lake Erie Millennium Network, CSMI, Ohio Phosphorus Task Force, and other meetings or workshops addressing nutrient and toxicity issues in Lake Erie. Communicate USGS activities in the Lake Erie Basin that can influence understanding or impact decision making.
Description of WorkThe Great Lakes Restoration Initiative (GLRI) was established to accelerate ecosystem restoration in the Great Lakes by confronting the most serious threats to the region, such as nonpoint source pollution, toxic sediments, and invasive species. Four Priority Watersheds have been targeted by the Regional Working Group's Phosphorus Reduction Work Group (Fox/Green Bay, Saginaw, Maumee, and Genesee) and are characterized by having a high density of agricultural land use and have ecosystem impairments that have been clearly identified. Monitoring is being conducted at the sub-watershed, edge-of-field, and subsurface-tile scale where monitoring locations are targeted to those areas within each watershed...
thumbnail
Description of WorkThe success of GLRI beach restoration projects must be assessed to determine whether goals of recipients are on track and identify any developing unforeseen consequences of restoration efforts. Implementation of multiple BMPs during restoration can make understanding the impacts of individual BMPs difficult. However, proper site selection and well-designed monitoring and assessment plan can overcome such difficulties. The urban beaches chosen for evaluation are at various stages of the restoration process and located in Indiana (Jeorse Park Beach), Illinois (63rd Street Beach), and Wisconsin (North Beach). Data used for evaluation include continuous monitoring and synoptic mapping of nearshore...
thumbnail
Description of Work Predictive models have been used at beaches to improve the timeliness and accuracy of recreational water-quality assessments over the most common current approach to water-quality monitoring, which relies on culturing fecal-indicator bacteria such as Escherichia coli (E. coli.)
thumbnail
Description of Work U.S. Geological Survey (USGS) provided a one-week training course for ''Geomorphic Analysis of Fluvial Systems'' to U.S. Environmental Protection Agency and other state and local agencies in Chicago. This provided an introduction to the concepts of how stream channels change over time due to natural and human-caused changes in the watershed. This training assisted managers in understanding the goals and limits of stream restoration specific to Great Lakes streams. Much of the training centered on sediment movement in channels and also was applicable to EPA managers working on clean-sediment TMDLs and nutrient-sediment interactions.
thumbnail
Description of Work U.S. Geological Survey (USGS) scientists will conduct fish sampling in Indiana to determine the main causes of impairment of Pigeon Creek. The U.S. Environmental Protection Agency and Indiana State agencies will use the data to evaluate ways to improve water quality. Fish assemblage data is needed to develop total maximum daily loads and implementation plans for impaired AOCs and tributaries in the Basin. Development of the TMDLs will include determining the sources of the pollutant, calculating loading allocations to ensure the designated uses will be met, and developing an implementation plan to achieve these allocations. TMDLs will address several pollutants including nutrients, sediment and...
thumbnail
Description of Work USGS scientists are developing science based forecasting tools that capture changes to water flows and discharges of nutrients and sediments to the Great Lakes. The work done by this project provides managers with forecasting tools for predicting the combined effects of climate and land use changes that will help them identify and prioritize the sites best suited for restoration efforts. USGS scientists will use remote-sensing data to establish a baseline understanding of current distributions of invasive wetland plants and then forecast potential invasion corridors. Alterations to the Great Lakes shoreline or water-level patterns associated with global climate change could have significant impacts...
Description of WorkExcessive nutrient and sediment concentrations and loads have been documented in many tributaries to the Great Lakes. Many efforts have been made during the first 5 years of GLRI to reduce nutrient and sediment concentrations in streams and rivers throughout the Great Lakes Basin, and these efforts will continue during Phase II of GLRI. In order to determine the success of these efforts at improving water quality, it is important to document in a systematic manner the water quality and loading from key tributaries to the Great Lakes.Goals & ObjectivesThe objectives of this project are to: 1) Collect streamflow and samples for sediment and nutrients for major streams that are tributary to the Great...
thumbnail
Description of Work In collaboration with 23 local and state agencies, beach-specific models were developed at 43 beaches throughout the Great Lakes region, and data were collected at 6 more beaches for future predictive model development. A predictive modeling workshop was hosted by USGS with instructors from USGS, USEPA, and Wisconsin DNR and included training on the use of USGS-developed data aggregation tools and USEPA’s Virtual Beach. Relevance & Impact Over 56 beaches across the Great Lakes region, in addition to those currently being monitored, will be included in this effort to help meet goals for healthier beaches. Key Findings Analyses were completed for a suite of pathogens at 12 Great Lakes beaches....


    map background search result map search result map Enhance Great Lakes beach recreational water quality decision making Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE ERIE Building local capacity to address nonpoint source problems Data for Development of Watershed TMDLs in the Great Lakes Basin Enabling Discovery and Access to USGS Great Lakes Scientific Data Through Web-Based Applications Forecasting Great Lakes Basin Responses to Future Change Developing and Implementing Predictive Models for Estimating Recreational Water Quality at Great Lakes Beaches in new York State Data for Development of Watershed TMDLs in the Great Lakes Basin Forecasting Great Lakes Basin Responses to Future Change Developing and Implementing Predictive Models for Estimating Recreational Water Quality at Great Lakes Beaches in new York State Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE ERIE Enhance Great Lakes beach recreational water quality decision making Enabling Discovery and Access to USGS Great Lakes Scientific Data Through Web-Based Applications Building local capacity to address nonpoint source problems