Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/Keyword","name":"fy 2012"} (X) > Types: OGC WMS Layer (X)

18 results (17ms)   

View Results as: JSON ATOM CSV
thumbnail
A limited amount of valid scientific information about global climate change and its detrimental impacts has reached the public and exerted a positive impact on the public policy process or future planning for adaptation and mitigation. This project was designed to address this limitation by bringing together expertise in the social and communication sciences from targeted academic institutions affiliated with the Department of the Interior’s Climate Science Centers (CSCs) through a workshop. The project team brought together expertise in the social and communication sciences from targeted academic institutions, particularly experts and scholars who are affiliated with the nation’s CSCs, by means of an invited...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
Climate change is expected to alter stream temperature and flow regimes over the coming decades, and in turn influence distributions of aquatic species in those freshwater ecosystems. To better anticipate these changes, there is a need to compile both short- and long-term stream temperature data for managers to gain an understanding of baseline conditions, historic trends, and future projections. Unfortunately, many agencies lack sufficient resources to compile, conduct quality assurance and control, and make accessible stream temperature data collected through routine monitoring. Yet, pooled data from many sources, even if temporally and spatially inconsistent, can have great value both in the realm of stream temperature...
thumbnail
In the Southeast, where rapid human development is increasingly dividing natural areas, habitat fragmentation and loss threaten the health and even genetic viability of wildlife populations, and interrupt migration routes. Climate change is projected to exacerbate fragmentation by further disrupting landscapes. To make matters worse, it is also expected to shift the range of many species, forcing animals capable of adapting by moving to expand into new areas to find more suitable temperatures and adequate food supplies – a challenge made difficult, if not impossible, by disconnected landscapes. Maintaining connectivity between habitats is a key strategy for conserving wildlife populations into the future, and sound...
thumbnail
A number of large-scale mapping projects have been completed in the U.S., and several cover all or some parts of the footprint of the Northeast Climate Science Center (NE CSC). These include maps by the Southeast GAP Analysis (SEGAP) program, the national LANDFIRE program, NatureServe, and The Nature Conservancy. These mapping projects represent a major step forward in describing the current extent of ecosystems on the landscape, and provide resource management agencies and organizations with unprecedented access to spatial information on these systems. In a number of cases, the ranges of these maps overlap. As a result, staff of resource management agencies and organizations are faced with trying to determine how...
thumbnail
This project addressed regional climate change effects on aquatic food webs in the Great Lakes. We sought insights by examining Lake Erie as a representative system with a high level of anthropogenic impacts, strong nutrient gradients, seasonal hypoxia, and spatial overlap of cold- and cool-water fish guilds. In Lake Erie and in large embayments throughout the Great Lakes basin, this situation is a concern for fishery managers, as climate change may exacerbate hypoxia and reduce habitat volume for some species. We examined fish community composition, fine-scale distribution, prey availability, diets, and biochemical tracers for dominant fishes from study areas with medium-high nutrient levels (mesotrophic, Fairport...
thumbnail
The number of fish collected in routine monitoring surveys often varies from year to year, from lake to lake, and from location to location within a lake. Although some variability in fish catches is expected across factors such as location and season, we know less about how large-scale disturbances like climate change will influence population variability. The Laurentian Great Lakes in North America are the largest group of freshwater lakes in the world, and they have experienced major changes due to fluctuations in pollution and nutrient loadings, exploitation of natural resources, introductions of non-native species, and shifting climatic patterns. In this project, we analyzed established long-term data about...
thumbnail
Tribal communities are especially vulnerable to the effects of climate change because of their reliance on the natural environment to sustain traditional activities and their limited resources to respond to climate change impacts. At the same time, tribes have valuable traditional knowledge that can aid regional efforts to address climate change. There were two overarching goals of this project: The first was to build partnerships between South Central Climate Science Center (SC CSC) researchers and tribal communities, linking tribes with climate change tools and resources and developing a model that could be replicated in other regions. The second goal was to document tribal viewpoints on climate change impacts...
thumbnail
Submersed aquatic vegetation (SAV) communities are highly productive ecosystems that provide significant ecological benefits to coastal areas, including essential calories for wintering waterfowl. However, the potential effects of sea-level rise is posing new questions about the future availability of SAV for waterfowl and other coastal wildlife. Of primary concern is the fact that rising seas have the potential to increase salinities in fresh and brackish marshes on the Gulf of Mexico’s coast, changing the distribution and composition of SAV communities, and affecting valuable waterfowl habitat and food resources. Not enough is known about the relationship between salinity and SAV to predict how this important...
thumbnail
Climate change is likely to have many effects on natural ecosystems in the Southeast U.S. While there is information available to conservation managers and ecologists from the global climate models (GCMs), this information is at too coarse a resolution for use in vulnerability assessments and decision making. To better assess how climate change could affect multiple sectors, including ecosystems, climatologists have created several downscaled climate projections that contain information from GCMs translated to regional or local scales. There are a number of techniques that can be used to create downscaled climate projections, and the number of available downscaled climate projections present challenges to users...
thumbnail
The Northeast United States and Atlantic Canada share many of the same types of forests, wetlands, and natural communities, and from a wildlife perspective the region is one contiguous forest. However, resources are classified and mapped differently on the two sides of the border, creating challenges for habitat evaluation, species modeling, and predicting the effects of climate change. To remedy this, ecologists from The Nature Conservancy collaborated with a committee of scientists from various Canadian institutions to produce the first international map of terrestrial habitats for northeast North America. The project used extensive spatial data on geology, soils, landforms, wetlands, elevation and climate. Additionally,...
thumbnail
This project addressed regional climate change effects on aquatic food webs in the Great Lakes. We sought insights by examining Lake Erie as a representative system with a high level of anthropogenic impacts, strong nutrient gradients, seasonal hypoxia, and spatial overlap of cold- and cool-water fish guilds. In Lake Erie and in large embayments throughout the Great Lakes basin, this situation is a concern for fishery managers, as climate change may exacerbate hypoxia and reduce habitat volume for some species. We examined fish community composition, fine-scale distribution, prey availability, diets, and biochemical tracers for dominant fishes from study areas with medium-high nutrient levels (mesotrophic, Fairport...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, Academics & scientific researchers, CSC, Climate Change, Conservation NGOs, All tags...
thumbnail
To date, hydrological and ecological models have been developed independently from each other, making their application particularly challenging for interdisciplinary studies. The objective of this project was to synthesize and evaluate prevailing hydrological and ecological models in the South-Central U.S., particularly the southern Great Plains region. This analysis aimed to identify the data requirements and suitability of each model to simulate stream flow while addressing associated changes in the ecology of stream systems, and to portray climate variability and uncertainty. The results and deliverables of this project are expected to include a comprehensive, updated, and systematic report on recent developments...
thumbnail
Coastal wetlands purify water, protect coastal communities from storms, sequester (store) carbon, and provide habitat for fish and wildlife. They are also vulnerable to climate change. In particular, changes in winter climate (warmer temperatures and fewer freeze events) may transform coastal wetlands in the northern Gulf of Mexico, as mangrove forests are expected to expand their range and replace salt marshes. The objective of this research was to evaluate the ecological implications of mangrove forest migration and salt marsh displacement. As part of this project, researchers identified important thresholds for ecosystem changes and highlighted coastal areas in the southeastern U.S. (e.g., Texas, Louisiana,...
thumbnail
The southeastern U.S. contains a unique diversity of ecosystems that provide important benefits, including habitat for rare wildlife and plants, improved water quality, and recreation opportunities. Understanding how climate change will affect these ecosystems is vital for knowing how best to protect them and the services they supply. The goal of this project was to assess the climate change vulnerability of 12 key ecosystems in the southeastern U.S. and Caribbean, ranging from Caribbean coastal mangrove to Nashville Basin limestone glade and woodland. Scientists used the existing scientific literature and geospatial analysis to determine each ecosystem’s sensitivity to changes in climate, its exposure level to...
thumbnail
This study set out to answer the question: “What data and modeling frameworks are needed to provide scientists reliable, climate-informed, water temperature estimates for freshwater ecosystems that can assist watershed management decision making?” To accomplish this, the study gathered existing stream temperature data, identified data gaps, deployed stream temperature monitoring devices, and developed and tested a stream temperature model that could be regionalized across the Northeast domain. We partnered with another funded project team, led by Jana Stewart at WI USGS to collect data from over 10,000 locations across the climate science center domain. This collection effort aided in identifying data gaps where...
thumbnail
We routinely encounter uncertainty when we make decisions – from picking a new morning coffee to choosing where to live. Even decisions that are supported by science contain some level of remaining uncertainty. In the context of conservation and wildlife management, the potential for uncertainty to influence decisions is perhaps most obvious when we think about predicting how actions (or non-actions) will have lasting impacts into the future. Our abilities to precisely predict future climatic and ecological conditions and determine the exact consequences of our actions are, and will remain, limited. Conservation practitioners and land and wildlife managers must navigate these challenges to make science-informed...


    map background search result map search result map Understanding the Varying Responses of Fish Populations to Future Climate Understanding How Climate Change Will Impact Aquatic Food Webs in the Great Lakes Developing a Comprehensive Terrestrial Habitat Map for the Northeastern U.S. and Atlantic Canada to Inform Planning Decisions Bringing People, Data, and Models Together – Addressing Impacts of Climate Change on Stream Temperature Assessing the Potential Impact of Sea-Level Rise on Submersed Aquatic Vegetation and Waterfowl in the Northern Gulf of Mexico Building Capacity within the CSC Network to Effectively Deliver and Communicate Science to Resource Managers and Planners Inter-Tribal Workshops on Climate Change in the Central U.S. Analyzing and Communicating the Ability of Data and Models to Simulate Streamflow and Answer Resource Management Questions Making Terrestrial and Wetland Habitat Maps Useful for Adaptation Planning NorEaST: A Tool to Understand the Responses of Fish to Changes in Stream Temperature Understanding Habitat Connectivity to Inform Conservation Decisions Ecological Implications of Mangrove Forest Migration in the Southeastern U.S. Assessing Climate-Sensitive Ecosystems in the Southeastern U.S. Evaluating Downscaled Climate Models for Projecting Future Changes in the Southeast Evaluating the Use of Models for Projecting Future Water Flow in the Southeast A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Turning Uncertainty into Useful Information for Conservation Decisions Understanding How Climate Change will Impact Aquatic Food Webs in the Great Lakes Understanding How Climate Change Will Impact Aquatic Food Webs in the Great Lakes Understanding How Climate Change will Impact Aquatic Food Webs in the Great Lakes Assessing the Potential Impact of Sea-Level Rise on Submersed Aquatic Vegetation and Waterfowl in the Northern Gulf of Mexico Developing a Comprehensive Terrestrial Habitat Map for the Northeastern U.S. and Atlantic Canada to Inform Planning Decisions Ecological Implications of Mangrove Forest Migration in the Southeastern U.S. Understanding the Varying Responses of Fish Populations to Future Climate Building Capacity within the CSC Network to Effectively Deliver and Communicate Science to Resource Managers and Planners Analyzing and Communicating the Ability of Data and Models to Simulate Streamflow and Answer Resource Management Questions Inter-Tribal Workshops on Climate Change in the Central U.S. Evaluating Downscaled Climate Models for Projecting Future Changes in the Southeast A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Bringing People, Data, and Models Together – Addressing Impacts of Climate Change on Stream Temperature NorEaST: A Tool to Understand the Responses of Fish to Changes in Stream Temperature Understanding Habitat Connectivity to Inform Conservation Decisions Making Terrestrial and Wetland Habitat Maps Useful for Adaptation Planning Evaluating the Use of Models for Projecting Future Water Flow in the Southeast Turning Uncertainty into Useful Information for Conservation Decisions Assessing Climate-Sensitive Ecosystems in the Southeastern U.S.