Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/Project/FiscalYear"} (X) > Types: OGC WMS Layer (X)

1,311 results (26ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tags (with Scheme=https://www.sciencebase.gov/vocab/category/NCCWSC/Project/FiscalYear)
View Results as: JSON ATOM CSV
thumbnail
The sky island forests of the southwestern United States are one of the most diverse temperate forest ecosystems in the world, providing key habitat for migrating and residential species alike. Black bear, bighorn sheep, mule deer, and wild turkey are just a few of the species found in these isolated mountain ecosystems that rise out of the desert landscape. However, recent droughts have crippled these ecosystems, causing significant tree death. Climate predictions suggest that this region will only face hotter and drier conditions in the future, potentially stressing these ecosystems even further. Simple models predict that vegetation will move to cooler and wetter locations in response to this warming. However,...
thumbnail
The South Central U.S. encompasses a wide range of ecosystem types and precipitation patterns. Average annual precipitation is less than 10 inches in northwest New Mexico but can exceed 60 inches further east in Louisiana. Much of the region relies on warm-season convective precipitation – that is, highly localized brief but intense periods of rainfall that are common in the summer. This type of precipitation is a significant driver of climate and ecosystem function in the region, but it is also notoriously difficult to predict since it occurs at such small spatial and temporal scales. While global climate models are helpful for understanding and predicting large-scale precipitation trends, they often do not capture...
thumbnail
Climate projections for the southern Great Plains, and elsewhere in the U.S., indicate that a hotter future with changes in precipitation amount and seasonality is to be expected. As plants become stressed from these changes, wildfire risk increases. One of the most valuable approaches to reducing the impacts of wildfires is fuel reduction through prescribed burns. Fuel reduction helps minimize the destruction of ecological communities, threats of future flooding, and extensive damages by lessening the intensity of future wildfires. Although safe burning practices can largely minimize the risks, prescribed burns may bring some degree of concern among practitioners. The real and perceived risks may include bodily...
thumbnail
The South Central U.S. is one of the main agricultural regions in North America: annual agricultural production is valued at more than $44 billion dollars. However, as climate conditions change, the region is experiencing more frequent and severe droughts, with significant impacts on agriculture and broader consequences for land management. For example, in 2011 drought caused an estimated $7.6 billion in agricultural losses in Texas and an additional $1.6 billion in Oklahoma. Although there are many drought monitoring tools available, most of these tools were developed without input from the stakeholders, such as farmers and ranchers, who are intended to use them. The goal of this project was to assess the information...
thumbnail
The threat of droughts and their associated impacts on the landscape and human communities has long been recognized in the United States, especially in high risk areas such as the South Central region. There is ample literature on the effects of long-term climate change and short-term climate variability on the occurrence of droughts. However, it is unclear whether this information meets the needs of relevant stakeholders and actually contributes to reducing the vulnerability or increasing the resilience of communities to droughts. For example, are the methods used to characterize the severity of drought – known as drought indices – effective tools for predicting the actual damage felt by communities? As droughts...
thumbnail
As the National Climate Adaptation Science Center (CASC) develops a strategic effort around fire science, there is a critical need to develop a national-scale synthesis effort that identifies key regional CASC activities previously conducted, as well as major science gaps that may be addressed by a coordinated CASC network approach. The North Central CASC postdoctoral fellow will play a leadership role in the National CASC Climate Adaptation Postdoctoral (CAP) Fellows Future of Fire cohort to help identify the common efforts and leveraging points to shape the national-scale synthesis. Currently there is limited North Central CASC supported fire science available for the North Central region. To meet this need,...
thumbnail
Description: The upper Gila River in New Mexico is one of the few unobstructed rivers in the Colorado River Basin with largely intact native fish populations, including four federally listed and one state listed species.Freshwater systems throughout the West continue to be threatened by human encroachment and water development. Methodologies or decision support tools to evaluate resource management practices that foster an understanding of how fish species adapt to the effects of climate change are critical to future resource management planning.
thumbnail
This project had two primary goals: 1) To develop a process for integrating data from multiple sources to improve predictions of climate impacts for wildlife species; and 2) To provide data on climate and related hydrological change, fire behavior under future climates, and species’ distributions for use by researchers and resource managers.We present within this report the process used to integrate species niche models, fire simulations, and vulnerability assessment methods and provide species’ reports that summarize the results of this work. Species niche model analysis provides information on species’ distributions under three climate scenarios and time periods. Niche model analysis allows us to estimate the...
thumbnail
This project used species distribution modeling to assess the risk to habitat change under various climate change scenarios for rare plants. To predict the response of rare plant species to climate change, the project modeled the current distribution of the species using climate and environmental data (e.g., soils, disturbance, land-use), use these models to predict the species distribution given climate change, calculate current and future range size, calculate the amount of overlap of predicted future distribution with current distribution, and assess where barriers and protected areas are located with reference to the change in species distribution. Given the results of the distribution modeling, each species...
thumbnail
Rate of global biodiversity loss increased significantly during the 20th century associated with human environmental alterations. Specifically, mismanagement of freshwater resources contributed to historical and contemporary loss of stream-dwelling fish diversity and will likely play a role in determining the persistence of species in the future. We present a mechanistic pathway by which human alteration of streams has caused the decline of a unique reproductive guild of Great Plains stream-dwelling fishes, and suggest how future climate change might exacerbate these declines. Stream fragmentation related to impoundments, diversion dams and stream dewatering are consequences of increasing demand for freshwater resources...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, AR-04, CATFISHES/MINNOWS, CO-03, CT-04, All tags...
thumbnail
We propose to use long-term fish-population data from a relict reach of the Pecos River, New Mexico to assess population dynamics of imperiled prairie-river minnows, including Arkansas River shiner. Development of viable management strategies requires basic understanding of population ecology. Rigorous, quantitative ecological methods can be used to analyze continuous, long-term demographic data, but such data are rarely available for imperiled, non-game fishes. Data available for the Pecos River provide a unique opportunity to apply quantitative methods to prairie-river minnow conservation and management. Analyses proposed here would determine (1) whether population regulation is density dependent or flow-regime...
thumbnail
Phase 1 & 2 (2010, 2012): This project developed a sampling design and monitoring protocol for wintering shorebirds in the Central Valley and in the San Francisco Bay Estuary and develop an LCC-specific online shorebird monitoring portal publicly available at the California Avian Data Center. The three objectives in Phase II of this project are: 1) Complete the shorebird monitoring plan for the CA LCC by developing a sampling design and monitoring protocol for wintering shorebirds in coastal southern California and northern Mexico. 2) Develop models to evaluate the influence of habitat factors from multiple spatial scales on shorebird use of San Francisco Bay and managed wetlands in the Sacramento Valley, as a model...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, 2011, 2013, Academics & scientific researchers, Academics & scientific researchers, All tags...
thumbnail
Society makes substantial investments in federal, Tribal, state, and private programs to supplement populations of valued species such as stocking fish, planting trees, rebuilding oyster reefs, and restoring prairies. These important efforts require long-term commitment, but climate change is making environmental conditions less predictable and more challenging to navigate. Selection of species for population supplementation is often based on performance prior to release, and one or a few species may then be used for decades even as the environment is changing. When these species are propagated in large numbers, they can become the dominant population as well as genetically overtake any local adaptations. Therefore,...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
National Wildlife Refuges (NWRs) along the East Coast of the United States protect habitat for a host of wildlife species, while also offering storm surge protection, improving water quality, supporting nurseries for commercially important fish and shellfish, and providing recreation opportunities for coastal communities. Yet in the last century, coastal ecosystems in the eastern U.S. have been severely altered by human development activities as well as sea-level rise and more frequent extreme events related to climate change. These influences threaten the ability of NWRs to protect our nation’s natural resources and to sustain their many beneficial services. Through this project, researchers are collaborating with...
thumbnail
In the northern Gulf of Mexico, mangrove forests have been expanding their northern range limits in parts of Texas, Louisiana, and north Florida since 1989. In response to warming winter temperatures, mangroves, which are dominant in warmer climates, are expected to continue migrating northward at the expense of salt marshes, which fare better in cooler climates. The ecological implications and timing of mangrove expansion is not well understood, and coastal wetland managers need information and tools that will enable them to identify and forecast the ecological impacts of this shift from salt marsh to mangrove-dominated coastal ecosystems. To address this need, researchers will host workshops and leverage existing...
thumbnail
The Southeastern U.S. spans broad ranges of physiographic settings and contains a wide variety of aquatic systems that provide habitat for hundreds of endemic aquatic species that pose interesting challenges and opportunities for managers of aquatic resources, particularly in the face of climate change. For example, the Southeast contains the southernmost populations of the eastern brook trout and other cold-water dependent species. Climate change is predicted to increase temperatures in the South and is likely to have a substantial effect on extant populations of cold-water biota. Thus, aquatic managers are tasked with developing strategies for preserving cold-water dependent biota, such as eastern brook trout,...
thumbnail
Water scarcity is a growing concern in Texas, where surface water is derived almost entirely from rainfall. Changes in air temperature and precipitation patterns associated with global climate change are anticipated to regionally affect the quality and quantity of inland surface waters and consequently their suitability as habitat for freshwater life. In addition to directly affecting resident organisms and populations, these changes in physicochemical traits of aquatic habitats may favor the establishment of harmful invasive species. As conflicts over the use of water resources grow in intensity, this information will become important for fish and wildlife managers to anticipate impacts of climate change on trust...


map background search result map search result map Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections Evaluating the Use of Models for Projecting Future Water Flow in the Southeast A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Consequences of stream fragmentation and climate change for rare Great Plains fishes Creating a detailed vegetation classification and digital vegetation map for Squaw Creek NWR Predicting Sky Island Forest Vulnerability to Climate Change: Fine Scale Climate Variability, Drought Tolerance, and Fire Response Improving Representation of Extreme Precipitation Events in Regional Climate Models Population Management of Prairie-River Minnows Community Resilience to Drought Hazard: An Analysis of Drought Exposure, Impacts, and Adaptation in the South Central U.S. Developing Effective Drought Monitoring Tools for Farmers and Ranchers in the South Central U.S. Assessing and Mapping Rare Plant Species Vulnerability to Climate Change A Monitoring Protocol to Assess Wintering Shorebird Population Trends Climate Change Adaptation for Coastal National Wildlife Refuges Final Report: Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change Science Brief for Resource Managers: Metacommunity Dynamics of Gila River Fishes Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico Future of Fire in the North Central: Towards a National Synthesis for Wildland Fire Under a Changing Climate Future of Fire in the South Central: Towards a National Synthesis of Wildland Fire Under a Changing Climate Climate-Adaptive Population Supplementation (CAPS) to Enhance Fishery and Forestry Outcomes Creating a detailed vegetation classification and digital vegetation map for Squaw Creek NWR Climate Change Adaptation for Coastal National Wildlife Refuges Predicting Sky Island Forest Vulnerability to Climate Change: Fine Scale Climate Variability, Drought Tolerance, and Fire Response Science Brief for Resource Managers: Metacommunity Dynamics of Gila River Fishes Population Management of Prairie-River Minnows Final Report: Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change A Monitoring Protocol to Assess Wintering Shorebird Population Trends Climate-Adaptive Population Supplementation (CAPS) to Enhance Fishery and Forestry Outcomes Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities Assessing and Mapping Rare Plant Species Vulnerability to Climate Change Consequences of stream fragmentation and climate change for rare Great Plains fishes Improving Representation of Extreme Precipitation Events in Regional Climate Models Community Resilience to Drought Hazard: An Analysis of Drought Exposure, Impacts, and Adaptation in the South Central U.S. Future of Fire in the South Central: Towards a National Synthesis of Wildland Fire Under a Changing Climate USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections Future of Fire in the North Central: Towards a National Synthesis for Wildland Fire Under a Changing Climate Developing Effective Drought Monitoring Tools for Farmers and Ranchers in the South Central U.S. Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Evaluating the Use of Models for Projecting Future Water Flow in the Southeast