Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/Project/OrganizationName"} (X) > Date Range: {"choice":"year"} (X) > Types: Map Service (X)

781 results (228ms)   

View Results as: JSON ATOM CSV
thumbnail
Recreational angling in the U.S. represents a large group of people that catch and harvest fish for a variety of reasons, including for relaxation, adventure, social motivations, and consumption. Collectively, recreational anglers can exert pressures on both economies and fishery resources. Fish removals by anglers represent an important source of mortality data when trying to understand fish populations, and this information is even more important when the fishery is dominated by recreational and subsistence fishing. Currently, the magnitude of recreational angling is measured at local scales (for example, at a specific lake or stream) and the process to collect information from anglers varies widely by state...
thumbnail
Modeling interactions between human and ecological systems is needed to identify pathways to meet multiple United Nations Sustainable Development Goals. Particularly important is the relationship between biodiversity, ecological processes, and ecosystem services. However, current models tend to ignore impacts of biodiversity on ecological processes. Existing models capture impacts of socio-economic activities on biodiversity or ecosystem services, but critically, links between biodiversity and ecosystem services are only weakly incorporated in most projections and hence in policy design. Knowledge of these relationships has improved, but is scattered across the literature, as are models addressing each component....
thumbnail
For the past few years, “king tides,” or the highest tides of the year, have been occurring more frequently and significantly affecting coastal environments across Hawaiʻi. Now, disappearing beaches and waves crashing over roadways are seemingly the “new normal.” In response, the state of Hawaiʻi is implementing adaptation strategies to combat tidal flooding in coastal areas. While flood management strategies are being implemented in urban areas, less is known about how tidal flooding, and associated inundation into surface and groundwater, might influence watershed dynamics and the native animals that depend on estuarine environments where freshwater meets the sea. Efforts for biocultural restoration of ecosystem...
thumbnail
The Pacific Islands Climate Adaptation Science Center (PI CASC) supports sustainability and climate adaptation in communities across the Pacific Islands by providing natural and cultural resource managers with access to actionable science specific to the region. PI CASC is hosted by the University of Hawaiʻi at Mānoa (UHM) with consortium partners at the University of Hawaiʻi at Hilo (UHH) and the University of Guam (UOG). During the period of 2019 - 2024, the PI CASC consortium will strive to i) build resiliency and sustainability in ecosystems and communities to climate change impacts; ii) strive to develop the best actionable climate science, while maintaining a non-advocacy stance; and iii) apply the elements...
thumbnail
PI-CASC regularly interacts with a diverse and extensive network of stakeholder organizations at federal, territory, state, county, and local levels across the Pacific Region, supporting communication and iterative problem solving between researchers, managers, and decision makers. In addition to these partnerships, PI-CASC has two important ongoing collaborative initiatives. Pacific Islands-Alaska CASC collaboration The PI-AK CASC collaboration is aimed at bringing together scientist and resource managers from the Pacific and Alaska regions to share insights on related climate adaptation challenges in Ridge-to-Reef (R2R) and Icefield-to-Ocean (I2O) ecosystems. Similarities in landscapes and communities in these...
thumbnail
Climate change is already affecting and will continue to impact the supply and demand of ecosystem goods and serivces (EGS) that are important for human well-being. Therefore, it is important to monitor trends and identify gaps in how climate change is incorporated into the assessment and management of these services. Systematic literature reviews play an important role in this process. For example, Runting et al. (2017) quantitatively synthesized how journal-published literature considered climate impacts in EGS assessments. Characterizing studies in a similar manner, our work examines assessments published since the November 2014 publication period included in Runting et al. (2017). These comparisons may reveal...
thumbnail
Elodea spp. (Elodea) is Alaska’s first known invasive aquatic plant, first discovered in urban lakes in 2010. The combination of human pathways and climate change related shifts in seasonality and temperature have resulted in Elodea’s range expansion into Alaska’s freshwater resources. Elodea transmission often occurs when plant fragments get entangled in seaplane rudders and are carried to remote waterbodies where they quickly establish dense plant growth. This growth inhibits seaplane access and drastically alters aquatic ecosystems. Recent research showed that Elodea can have significant negative impacts on parks, subsistence, aviation‐related recreation, and Alaska’s salmon fisheries. For example, the economic...
thumbnail
The threat of droughts and their associated impacts on the landscape and human communities has long been recognized in the United States, especially in high risk areas such as the South Central region. There is ample literature on the effects of long-term climate change and short-term climate variability on the occurrence of droughts. However, it is unclear whether this information meets the needs of relevant stakeholders and actually contributes to reducing the vulnerability or increasing the resilience of communities to droughts. For example, are the methods used to characterize the severity of drought – known as drought indices – effective tools for predicting the actual damage felt by communities? As droughts...
thumbnail
There are approximately 2,000 species of migratory birds worldwide, and over 300 of those can be found in North America. Changing climate conditions pose challenges for many migratory birds and their responses to these challenges can depend on their biology. To illustrate these impacts, a board game, called Migration Mismatch, was developed to help elementary school students understand these challenges. Migration Mismatch can help students build their understanding of biological processes and how species, birds in this case, interact with their environment. The game provides an interactive element to learning about adaptations of different bird species to environmental changes and provides a link to birds they may...
thumbnail
Inland fish populations are a crucial resource to humans and communities around the world. Recreational fishing throughout the United States, for example, provides important revenue to local and state economies; globally, inland fisheries are a vital food source for billions of people. Warming temperatures and changing precipitation patterns, however, are already causing significant changes to fish communities worldwide. Since the mid-1980s, scientists have projected the effects of climate change on inland fish, and in more recent years, documentation of impacts has increased. However, the number of documented impacts of climate change on inland fish remains low. A comprehensive understanding of how climate change...
thumbnail
Covering 120 million acres across 14 western states and 3 Canadian provinces, sagebrush provides critical habitat for species such as pronghorn, mule deer, and sage-grouse – a species of conservation concern. The future of these and other species is closely tied to the future of sagebrush. Yet this important ecosystem has already been affected by fire, invasive species, land use conversion, and now, climate change. In the western U.S., temperatures are rising and precipitation patterns are changing. However, there is currently a limited ability to anticipate the impacts of climate change on sagebrush. Current methods suffer from a range of weakness that limits the reliability of results. In fact, the current uncertainty...
thumbnail
Maintaining the native prairie lands of the Northern Great Plains (NGP), which provide an important habitat for declining grassland species, requires anticipating the effects of increasing atmospheric carbon dioxide (CO2) concentrations and climate change on the region’s vegetation. Specifically, climate change threatens NGP grasslands by increasing the potential encroachment of native woody species into areas where they were previously only present in minor numbers. This project used a dynamic vegetation model to simulate vegetation type (grassland, shrubland, woodland, and forest) for the NGP for a range of projected future climates and relevant management scenarios. Comparing results of these simulations illustrates...
thumbnail
A limited amount of valid scientific information about global climate change and its detrimental impacts has reached the public and exerted a positive impact on the public policy process or future planning for adaptation and mitigation. This project was designed to address this limitation by bringing together expertise in the social and communication sciences from targeted academic institutions affiliated with the Department of the Interior’s Climate Science Centers (CSCs) through a workshop. The project team brought together expertise in the social and communication sciences from targeted academic institutions, particularly experts and scholars who are affiliated with the nation’s CSCs, by means of an invited...
thumbnail
Water scarcity is a growing concern in Texas, where surface water is derived almost entirely from rainfall. Changes in air temperature and precipitation patterns associated with global climate change are anticipated to regionally affect the quality and quantity of inland surface waters and consequently their suitability as habitat for freshwater life. In addition to directly affecting resident organisms and populations, these changes in physicochemical traits of aquatic habitats may favor the establishment of harmful invasive species. As conflicts over the use of water resources grow in intensity, this information will become important for fish and wildlife managers to anticipate impacts of climate change on trust...
thumbnail
Cheatgrass began invading the Great Basin about 100 years ago, changing large parts of the landscape from a rich, diverse ecosystem to one where a single invasive species dominates. Cheatgrass dominated areas experience more fires that burn more land than in native ecosystems, resulting in economic and resource losses. Therefore, the reduced production, or absence, of cheatgrass in previously invaded areas during years of adequate precipitation could be seen as a windfall. However, this cheatgrass dieoff phenomenon creates other problems for land managers like accelerated soil erosion, loss of early spring food supply for livestock and wildlife, and unknown recovery pathways. We used satellite data and scientific...
thumbnail
With joint funding from the North Central Climate Science Center (NC CSC) and NASA's Earth Science Applied Sciences Program, the NC CSC supports resource managers and their decision process through its Resource for Vulnerability Assessment, Adaptation and Mitigation Planning (ReVAMP), a collaborative research/planning effort supported by high performance computing and modeling resources. The NC CSC focuses primarily on climate data as input to the ReVAMP. In this project the NASA DEVELOP program was used to evaluate how remote sensing data sets can contribute to the ecological response models that are implemented in the ReVAMP system. This work demonstrates the utility of remote sensing in vulnerability assessment...
thumbnail
The Jago, Okpilak, and Hulahula rivers in the Arctic are heavily glaciated waterways that are important for fish and wildlife as well as human activities including the provision of food, recreation, and, potentially, resource extraction on the coastal plain. If current glacial melting trends continue, most of the ice in these rivers will disappear in the next 50-100 years. Because of their importance to human and natural communities, it is critical to understand how these rivers and their surrounding environments will be affected by climate change and glacier loss. The overarching goal of this project was to research (1) the amount of river water, sediment, nutrients, and organic matter in the Jago, Okpilak, and...
thumbnail
The sky island forests of the southwestern United States are one of the most diverse temperate forest ecosystems in the world, providing key habitat for migrating and residential species alike. Black bear, bighorn sheep, mule deer, and wild turkey are just a few of the species found in these isolated mountain ecosystems that rise out of the desert landscape. However, recent droughts have crippled these ecosystems, causing significant tree death. Climate predictions suggest that this region will only face hotter and drier conditions in the future, potentially stressing these ecosystems even further. Simple models predict that vegetation will move to cooler and wetter locations in response to this warming. However,...
thumbnail
Global climate change and sea-level rise will have profound effects on estuarine fish, shellfish and wildlife populations and their habitats. Our ability to manage sustainable fish, shellfish and other wildlife populations in the future will be seriously compromised unless we have a basic understanding of the coming changes and use this to develop mitigation and adaptation measures. The overall objective of this multi-agency research is to develop the baseline climatic and biological data, models, and tools to predict the cumulative impact of climate change on habitats and ecosystem services in a series of coastal estuaries of the Pacific Northwest. In collaboration with other federal, state, and non-governmental...
thumbnail
The South Central U.S. is one of the main agricultural regions in North America: annual agricultural production is valued at more than $44 billion dollars. However, as climate conditions change, the region is experiencing more frequent and severe droughts, with significant impacts on agriculture and broader consequences for land management. For example, in 2011 drought caused an estimated $7.6 billion in agricultural losses in Texas and an additional $1.6 billion in Oklahoma. Although there are many drought monitoring tools available, most of these tools were developed without input from the stakeholders, such as farmers and ranchers, who are intended to use them. The goal of this project was to assess the information...


map background search result map search result map Predicting Climate Change Threats to Key Estuarine Habitats and Ecosystem Services in the Pacific Northwest Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Regional Short- and Long-term Climate Impacts on Northern Rocky Mountain and Great Plains Ecosystems Building Capacity within the CSC Network to Effectively Deliver and Communicate Science to Resource Managers and Planners The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic Predicting Sky Island Forest Vulnerability to Climate Change: Fine Scale Climate Variability, Drought Tolerance, and Fire Response Community Resilience to Drought Hazard: An Analysis of Drought Exposure, Impacts, and Adaptation in the South Central U.S. Developing Effective Drought Monitoring Tools for Farmers and Ranchers in the South Central U.S. Forecasting Future Changes in Sagebrush Distribution and Abundance Global Analysis of Trends in Projected and Documented Effects of Climate Change on Inland Fish Migration Mismatch: Bird Migration and Phenological Mismatching The Missing Link: Incorporating the Role of Biological Diversity into Projections of Ecosystem Services A Synthesis of Recent Links Between Climate Change and Ecosystem Services Supply and Demand One from Many: Combining State Creel Data to Estimate Regional Harvest Pacific Islands Climate Adaptation Science Center Consortium - Hosted by University of Hawai‘i, Mānoa (2019-2024) Detecting and Predicting Aquatic Invasive Species Transmission Via Seaplanes in Alaska Regional Collaborations Effect of Extreme Tidal Events on Future Sea-Level Rise Scenarios for He‘eia Fish Communities undergoing Ahupua‘a Restoration Predicting Sky Island Forest Vulnerability to Climate Change: Fine Scale Climate Variability, Drought Tolerance, and Fire Response Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Forecasting Future Changes in Sagebrush Distribution and Abundance Effect of Extreme Tidal Events on Future Sea-Level Rise Scenarios for He‘eia Fish Communities undergoing Ahupua‘a Restoration Building Capacity within the CSC Network to Effectively Deliver and Communicate Science to Resource Managers and Planners Community Resilience to Drought Hazard: An Analysis of Drought Exposure, Impacts, and Adaptation in the South Central U.S. One from Many: Combining State Creel Data to Estimate Regional Harvest Regional Short- and Long-term Climate Impacts on Northern Rocky Mountain and Great Plains Ecosystems Developing Effective Drought Monitoring Tools for Farmers and Ranchers in the South Central U.S. Detecting and Predicting Aquatic Invasive Species Transmission Via Seaplanes in Alaska Migration Mismatch: Bird Migration and Phenological Mismatching Pacific Islands Climate Adaptation Science Center Consortium - Hosted by University of Hawai‘i, Mānoa (2019-2024) Regional Collaborations Global Analysis of Trends in Projected and Documented Effects of Climate Change on Inland Fish The Missing Link: Incorporating the Role of Biological Diversity into Projections of Ecosystem Services A Synthesis of Recent Links Between Climate Change and Ecosystem Services Supply and Demand