Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/WaterCoastsandIce"} (X) > Types: Downloadable (X)

117 results (72ms)   

View Results as: JSON ATOM CSV
thumbnail
Within large-river ecosystems, floodplains serve a variety of important ecological functions. A recent survey of 80 managers of floodplain conservation lands along the Upper and Middle Mississippi and Lower Missouri Rivers in the central United States found that the most critical information needed to improve floodplain management centered on metrics for characterizing depth, extent, frequency, duration, and timing of inundation. These metrics can be delivered to managers efficiently through cloud-based interactive maps. To calculate these metrics, we interpolated an existing one-dimensional HEC-RAS hydraulic model for the Lower Missouri River, which simulated water surface elevations at cross sections spaced (<1...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
Mean modeled snow-water-equivalent (meters) on February 20, the date of peak basin-integrated mean modeled snow-water-equivalent (meters) for the T4 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
The percentage difference between mean modeled snow-water-equivalent (meters) on April 1 for the reference (1989-2011) climate period and mean modeled snow-water-equivalent on April 1 for the T4 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
The absolute difference between mean modeled snow-water-equivalent on March 28 for the reference period and mean modeled snow-water-equivalent on February 20 for the T4P10 climate change scenario, which are the dates of peak basin-integrated SWE for each period, respectively.Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4P10 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record, and +10% precipitation to each daily precipitation record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
The percentage difference between mean modeled snow-water-equivalent (meters) on April 1 for the reference (1989-2011) climate period and mean modeled snow-water-equivalent on April 1 for the T2 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T2 scenario: the observed historical (reference period) meteorology is perturbed by adding +2°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
Contains: digital elevation model geotiffs, hillshades, shapefiles of meteorological stations, watershed boundaries polygons, and other snow model base data.
thumbnail
Mean modeled snow-water-equivalent (meters) on March 13, the date of peak basin-integrated mean modeled snow-water-equivalent (meters) for the T2 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T2 scenario: the observed historical (reference period) meteorology is perturbed by adding +2oC to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
We performed bathymetric surveys using a shallow-water echo-sounding system (Takekawa et al., 2010, Brand et al., 2012) comprised of an acoustic profiler (Navisound 210; Reson, Inc., Slangerup, Denmark), Leica RTK GPS Viva rover, and laptop computer mounted on a shallow-draft, portable flat-bottom boat (Bass Hunter, Cabelas, Sidney, NE; Figure 7). The RTK GPS obtained high resolution elevations of the water surface (reported precision 10 cm water depth. We recorded twenty depth readings and one GPS location each second along transects spaced 100 m apart perpendicular to the nearby salt marsh. We calibrated the system before use with a bar-check plate and adjusted the sound velocity for salinity and temperature differences....
thumbnail
We performed bathymetric surveys using a shallow-water echo-sounding system (Takekawa et al., 2010, Brand et al., 2012) comprised of an acoustic profiler (Navisound 210; Reson, Inc., Slangerup, Denmark), Leica RTK GPS Viva rover, and laptop computer mounted on a shallow-draft, portable flat-bottom boat (Bass Hunter, Cabelas, Sidney, NE; Figure 7). The RTK GPS obtained high resolution elevations of the water surface (reported precision 10 cm water depth. We recorded twenty depth readings and one GPS location each second along transects spaced 100 m apart perpendicular to the nearby salt marsh. We calibrated the system before use with a bar-check plate and adjusted the sound velocity for salinity and temperature differences....
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
Create an inventory of water-related models that have been developed for the Rio Grande/Bravo basin. The summary includes a description of model river extent, spatial and temporal resolution, time period, model type, and their possible application for testing environmental flows or climate change future alternatives.
thumbnail
ArcGIS layer package of relative classifications (low to high) for six resilience indicators and two anthropogenic stressors and a map of final relative resilience scores for 78 sites in the Commonwealth of the Northern Mariana Islands. The six resilience indicators are: bleaching resistance, coral diversity, coral recruitment, herbivore biomass, macroalgae cover and temperature variability. The two anthropogenic stressors are fishing access and nutrients and sediments. The resilience score map compares sites across all four of the surveyed islands: Saipan, Tinian, Aguijan, and Rota.
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...


map background search result map search result map Coral Reef Resilience to Climate Change in CNMI results Modeled snow-water-equivalent, percent difference between historical and projected April 1 values under T2 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, percent difference between historical and projected April 1 values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference in historical and projected seasonal peak values under T4P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T2 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Morro Bay, California: Tidal Marsh Digital Elevation Model Pt. Mugu, California: Tidal Marsh Digital Elevation Model San Pablo, California: Tidal Marsh Digital Elevation Model Tijuana: Tidal Marsh Digital Elevation Model Humboldt, California: Tidal Marsh Bathymetry Digital Elevation Model San Pablo, California: Tidal Marsh Bathymetry Digital Elevation Models SLR Projections, Bolinas, Calif., 2010-2060 SLR Projections, Bolinas, Calif., 2070-2110 SLR Projections, Pt. Mugu, Calif., 2070-2110 River extent of water related models in the Rio Grande/Bravo basin Rio Grande-Rio Bravo Basin Subset Data Climate Change Scenario Inundation Metrics along the Upper and Middle Mississippi and Lower Missouri Rivers Streamflow Permanence Probability rasters, 2004-2011, Version 2.0 (PROSPER) SLR Projections, Pt. Mugu, Calif., 2070-2110 Pt. Mugu, California: Tidal Marsh Digital Elevation Model SLR Projections, Bolinas, Calif., 2010-2060 SLR Projections, Bolinas, Calif., 2070-2110 Humboldt, California: Tidal Marsh Bathymetry Digital Elevation Model Morro Bay, California: Tidal Marsh Digital Elevation Model San Pablo, California: Tidal Marsh Digital Elevation Model Tijuana: Tidal Marsh Digital Elevation Model San Pablo, California: Tidal Marsh Bathymetry Digital Elevation Models Coral Reef Resilience to Climate Change in CNMI results Climate Change Scenario Inundation Metrics along the Upper and Middle Mississippi and Lower Missouri Rivers River extent of water related models in the Rio Grande/Bravo basin Rio Grande-Rio Bravo Basin Subset Data Streamflow Permanence Probability rasters, 2004-2011, Version 2.0 (PROSPER)