Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/WRET/CMS_Themes/Powell_CMS_Themes","name":"land resources"} (X) > Categories: Project (X)

28 results (133ms)   

View Results as: JSON ATOM CSV
thumbnail
Advancing our mechanistic understanding of ecosystem responses to climate change is critical to improve ecological theories, develop predictive models to simulate ecosystem processes, and inform sound policies to manage ecosystems and human activities. Manipulation of temperature in the field, or the “ecosystem warming experiment,” has proved to be a powerful tool to understand ecosystem responses to changes in temperature. No comprehensive synthesis has been conducted since the last one more than 10 years ago. A new synthetic analysis is critically needed to advance our understanding of ecosystem responses to warming, to highlight experimental artifacts and appropriate interpretations, and to guide development...
thumbnail
Tropical forests contain > 50% of the world’s known species (Heywood 1995), 55% of global forest biomass (Pan et al. 2011), and exchange more carbon (C), water and energy with the atmosphere than any other ecosystem type (e.g., Saugier et al. 2001). Despite their importance, there is more uncertainty associated with predictions of how tropical forests will respond to warming than for any other biome (Randerson et al. 2009). This uncertainty is of global concern due to the large quantity of C cycled by these forests and the high potential for biodiversity loss. Given the importance of tropical forests, decision makers and land managers around the globe need increased predictive capacity regarding how tropical forests...
thumbnail
Amphibian populations are declining globally at unprecedented rates but statistically rigorous identification of mechanisms is lacking. Identification of reasons underlying large-scale declines is imperative to plan and implement effective conservation efforts. Most research on amphibian population decline has focused on local populations and local factors. However, the ubiquity of declines across species and landscapes suggests that causal factors at a broader scale are also important. Elucidation of the mechanisms driving population change has lagged, mainly because data have been unavailable at continental scales. We propose to address this need by assembling data to answer questions about broad-scale drivers...
thumbnail
Migratory species may provide more ecosystem goods and services to humans in certain parts of their range than others. These areas may or may not coincide with the locations of habitat on which the species is most dependent for its continued population viability. This situation can present significant policy challenges, as locations that most support a given species may be in effect subsidizing the provision of services in other locations, often in different political jurisdictions. The ability to quantify these spatial subsidies could be used to develop economic incentives that internalize the costs and benefits of protecting migratory species, enhancing cross-jurisdictional cooperative management. Targeted payments...
thumbnail
Increasing wildfire activity in much of North America is having severe impacts on society and ecosystems. Climate change is a key driver of changing fire regimes across North America, with varying expressions across the continent. Modern fire records, while useful, are too short to fully characterize the complex patterns and non-linear dynamics of fire-climate relationships that are required to understand future fire activity in a warmer climate. Tree-ring fire scars offer a unique perspective because they are spatially precise, direct evidence of fires with annual to sub-annual resolution spanning centuries. For the first time, we have compiled tree-ring fire scar records across North America (n = 2,593 sites,...
thumbnail
Plants convert carbon dioxide into sugars for food during photosynthesis, and this provides food for all animal life. However, photosynthesis is inhibited when a plant’s enzymes use oxygen instead of carbon dioxide. To avoid this use of oxygen, some plants developed a photosynthetic adaptation – called C4 photosynthesis – to concentrate carbon dioxide around the enzymes. While less than 5% of plants use the C4 photosynthetic pathway, they make up ~20% of global terrestrial gross primary productivity. Due to their high productivity, C4 plants have a profound impact on ecosystems, economies, the carbon cycle, and our climate. Corn and sugarcane are both C4 plants, as are foundational western livestock and wildlife...
thumbnail
Nitrogen deposition is altering forest dynamics, terrestrial carbon storage, and biodiversity. However, our ability to forecast how different tree species will respond to N deposition, especially key response thresholds, is limited by a lack of synthesis across spatial scales and research approaches. To develop our best understanding of N deposition impact on tree growth and survival, we will integrate plot-­‐ level studies describing plant growth and survival responses to N inputs and plant-­‐ available soil nutrients with a continental scale analysis across a N deposition gradient. Our primary outcome will be estimates of tree response to N deposition with explicit representation of uncertainty and the identification...
thumbnail
Soils are a vast reservoir of organic carbon (C), rendering the fate of soil C an important control on the global climate system. Widespread changes in soil C storage capacity present a potentially strong feedback to global change. Yet, a comprehensive understanding of how soil C will respond to climate and/or land use disturbance remains illusive, resulting in major uncertainties in global climate models. Our working group will synthesize information on the processes controlling soil C storage across different spatial scales and develop new procedures to translate local measurements to the regional and global scale datasets used by models. These activities will improve our ability to map the vulnerability of soil...
thumbnail
Wetlands provide many important ecosystem services, including wildlife habitat, water purification, flood protection, and carbon metabolism. Our ability to manage these services and predict the long-term health of wetlands is strongly linked to their carbon fluxes, of which methane (CH4) is a key component. Natural wetlands emit approximately 30% of global CH4 emissions, as their waterlogged soils create ideal conditions for CH4 production. They are also the largest, and potentially most uncertain, natural source of CH4 to the atmosphere. To understand and predict CH4 fluxes across wetlands globally, we propose the first synthesis of CH4 flux tower data accompanying a global database of CH4 emissions. By taking...
thumbnail
Water cycling and availability exert dominant control over ecological processes and the sustainability of ecosystem services in water - limited ecosystems. Consequently, dryland ecosystems have the potential to be dramatically impacted by hydrologic alterations emerging from global change, notably increasing temperature and altered precipitation patterns. In addition, the possibility of directly manipulating global solar radiation by augmenting stratospheric SO2 is receiving increasing attention as CO2 emissions continue to increase - these manipulations are anticipated to decrease precipitation, a change that may be as influential as temperature increases in dryland ecosystems. We propose to integrate a proven...
thumbnail
Groundwater withdrawals in the western US are a critical component of the water resources strategy for the region. Climate change already may be substantially altering recharge into groundwater systems; however, the quantity and direction (increase or decrease) of changes are relatively unknown as most climate change assessments have focused on surface water systems. We propose to conduct a broad scale literature review followed by a synthesis of available data, analysis and simulations with available downscaled climate scenarios to understand how recharge in the western US might respond to plausible climatic shifts during the rest of the 21st Century. We will produce an estimated range of impacts on groundwater...
thumbnail
Biological nitrogen fixation (BNF) is a critical biogeochemical process that converts inert atmospheric N2 gas into biologically usable forms of the essential nutrient nitrogen. A variety of free-living and symbiotic organisms carry out BNF, and in most regions worldwide, BNF is the largest source of nitrogen that fuels terrestrial ecosystems. As a result, BNF has far reaching effects on ecosystem properties (water quality, carbon storage), sustainability (plant growth, soil fertility), and the global climate system. Despite this cross-cutting importance, existing syntheses of BNF have major gaps, with particular challenges in upscaling local measurements across large areas. These gaps, and a corresponding lack...
thumbnail
Estimating species response to environmental change is a key challenge for ecologists and a core mission of the USGS. Effective forecasting of species response requires models that are detailed enough to capture critical processes and at the same time general enough to allow broad application. This tradeoff is difficult to reconcile with most existing methods. We propose to extend and combine existing models that operate at different scales and with different levels of data complexity into a modeling framework that will allow robust estimation of population response to environmental change across a species’ range. This integrated modeling is now possible with the increasing development and application of population...
thumbnail
Resilience science provides a conceptual framework and methodology for quantitatively assessing the ability of a system to remain in a particular state. Probable non-linear ecological responses to global change, including climate change, require a clear framework for understanding and managing resilience. However, much of the resilience research to date has been qualitative in nature, and frameworks developed for the implementation of resilience science have been either vague or focused on the social component of social-ecological systems. Attempts to quantify resilience and operationalize the concept include the cross-scale resilience model, discontinuity theory and the early detection of leading indicators of...
Climate change is expected to have significant effects on the phenology of vectors of arthropod-borne diseases, particularly mosquitoes. However, forecasting the direction and magnitude of future phenological shifts requires a more detailed understanding of the climate drivers of mosquito phenology. Addressing this knowledge gap is particularly salient for mosquitoes, as they have the potential to affect human health through transmission of zoonotic disease. While models based on climate and mosquito life history have been created at local or regional scales, national-scale predictions of the timing of mosquito activity are not readily available for the U.S. Our workshop proposes to synthesize primary data on mosquito...
thumbnail
While it is widely recognized that microorganisms are intimately linked with every biogeochemical cycle in all ecosystems, it is not clear how and when microbial dynamics constrain ecosystem processes. As a result, it is know clear how to apply the value of increasingly detailed characterization of microbial properties to our understanding of ecosystem ecology. Several recent papers have demonstrated how information about microbial dynamics can be incorporated into ecosystem models (Allison et al. 2010, McGuire and Treseder 2010, Todd - Brown et al. 2011a), but it is generally not clear what types of microbial data are most useful in explaining variation in biogeochemical processes and ecosystem functioning, especially...
thumbnail
The transport of dissolved organic matter (DOM) by rivers is an important component of the global carbon cycle, affects ecosystems and water quality, and reflects biogeochemical and hydrological processes in watersheds. Understanding the fundamental relationships between discharge and DOM concentration and composition reveals important information about watershed flow paths, soil flushing, connectivity to riparian zones, organic matter leaching, soil moisture, and climatic influences. Data to describe these processes - both magnitude and timing - is critical for modeling and predicting watershed DOM dynamics, particularly in light of land use and climate change . Despite several decades of data collection, a synthesis...
thumbnail
Streamflow is declining in many parts of the United States (US) due to factors including groundwater pumping, land use change, and climate change. Streamflow depletion, a reduction in groundwater discharge to a stream due to human activities such as pumping and/or land use change, tends to evolve slowly and can be entirely invisible for many years to decades. This is because streamflow depletion can be masked by the natural and/or climate change-induced variability in streamflow, and groundwater storage can buffer the impacts on streams. The negative effects on both anthropogenic and ecological systems can evolve over decades or more, and specific causes and potential solutions to these issues are often difficult...
thumbnail
Forests sequester the majority of the terrestrial biosphere’s carbon and are key components of the global carbon cycle, potentially contributing substantial feedbacks to ongoing climatic changes. It is therefore remarkable that no consensus yet exists about the fundamental nature of tree mass growth (and thus carbon sequestration rate). Specifically, does tree mass growth rate increase, decrease, or stay the same with increasing tree size? The answer could have profound implications for our ability to forecast the role of forests in the global carbon cycle and to devise appropriate adaptation and mitigation strategies for forests in the face of rapid climatic changes. We will conduct the first global-scale characterization...
thumbnail
USGS PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project global data sets of Pliocene conditions, which form the most comprehensive global reconstruction for any warm period prior to the recent past, are used to drive numerical climate model simulations designed to explore the impact of climate forcings and feedbacks during the Pliocene. The Pliocene world provides an unequaled paleo-­‐laboratory to test the sensitivity of the physical models that estimate the impacts of future warming and challenges our understanding of the sensitivity of key components of the climate system and how they are simulated (e.g., polar vs. tropical sensitivity, the role of ocean circulation in a warming climate, the...


map background search result map search result map Animal Migration and Spatial Subsidies: Establishing a Framework for Conservation Markets Animal Migration and Spatial Subsidies: Establishing a Framework for Conservation Markets