Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/WRET/CMS_Themes/Powell_CMS_Themes"} (X) > Categories: Project (X)

77 results (23ms)   

View Results as: JSON ATOM CSV
thumbnail
Soils are a vast reservoir of organic carbon (C), rendering the fate of soil C an important control on the global climate system. Widespread changes in soil C storage capacity present a potentially strong feedback to global change. Yet, a comprehensive understanding of how soil C will respond to climate and/or land use disturbance remains illusive, resulting in major uncertainties in global climate models. Our working group will synthesize information on the processes controlling soil C storage across different spatial scales and develop new procedures to translate local measurements to the regional and global scale datasets used by models. These activities will improve our ability to map the vulnerability of soil...
thumbnail
Geographically Isolated Wetlands (GIWs) occur along gradients of hydrologic and ecological connectivity and isolation, even within wetland types (e.g., forested, emergent marshes) and functional classes (e.g., ephemeral systems, permanent systems, etc.). Within a given watershed, the relative positions of wetlands and open-waters along these gradients influence the type and magnitude of their chemical, physical, and biological effects on downgradient waters. In addition, the ways in which GIWs connect to the broader hydrological landscape, and the effects of such connectivity on downgradient waters, depends largely upon climate, geology, and relief, the heterogeneity of which expands with increasing scale. Developing...
thumbnail
River ecosystems support a wide diversity of biota, including thousands of fish species, which are variously adapted to the dynamic environments provided by flowing-water habitats. One of the primary ways that human activities diminish the biological capacity of rivers is by altering the natural hydrologic variability of river systems through regulation and diversion of streamflow for other uses. Managers may be able to avoid some of the worst effects of flow management on aquatic biota if we understand the mechanisms by which streamflow components, such as unusually high and low flow events, affect populations (e.g., by influencing recruitment and mortality). Numerous past studies have described correlative associations...
thumbnail
Wetlands provide many important ecosystem services, including wildlife habitat, water purification, flood protection, and carbon metabolism. Our ability to manage these services and predict the long-term health of wetlands is strongly linked to their carbon fluxes, of which methane (CH4) is a key component. Natural wetlands emit approximately 30% of global CH4 emissions, as their waterlogged soils create ideal conditions for CH4 production. They are also the largest, and potentially most uncertain, natural source of CH4 to the atmosphere. To understand and predict CH4 fluxes across wetlands globally, we propose the first synthesis of CH4 flux tower data accompanying a global database of CH4 emissions. By taking...
thumbnail
Fresh water is arguably the most valuable resource on the planet, but human activities threaten freshwater ecosystems. For example, use of synthetic chemicals, such as pesticides, road salts, and nutrients, has led to the ubiquitous contamination of aquatic systems, jeopardizing the integrity of ecological communities. Given the importance biodiversity plays in maintaining ecosystem health and function and the continued decline of freshwater species, it is vital to understand the direct, indirect, and lasting effects of synthetic contaminants on biota in freshwater systems. The majority of our knowledge regarding contaminant effects is comprised of short-term, single-contaminant laboratory toxicity tests that describe...
thumbnail
Despite the best monitoring networks, the highest rate of earthquakes and the longest continuous recorded history in the world, this year’s M=9.0 Tohoku, Japan, earthquake was completely unforeseen. The Japanese had expected no larger than a M=8 quake in the Japan trench, 1/30 th the size of the Tohoku temblor. This year also saw the devastating M=6.3 Christchurch, New Zealand earthquake and the M=5.8 Virginia quake, and it marks the bicentennial of the enigmatic but destructive 1811 - 1812 M~7 ½ New Madrid, Missouri, earthquakes, each event an example of how poorly we can forecast earthquake rates or their ultimate size in the planet’s vast intraplate regions far from plate boundaries. The goal of the Global...
thumbnail
Water cycling and availability exert dominant control over ecological processes and the sustainability of ecosystem services in water - limited ecosystems. Consequently, dryland ecosystems have the potential to be dramatically impacted by hydrologic alterations emerging from global change, notably increasing temperature and altered precipitation patterns. In addition, the possibility of directly manipulating global solar radiation by augmenting stratospheric SO2 is receiving increasing attention as CO2 emissions continue to increase - these manipulations are anticipated to decrease precipitation, a change that may be as influential as temperature increases in dryland ecosystems. We propose to integrate a proven...
thumbnail
Groundwater withdrawals in the western US are a critical component of the water resources strategy for the region. Climate change already may be substantially altering recharge into groundwater systems; however, the quantity and direction (increase or decrease) of changes are relatively unknown as most climate change assessments have focused on surface water systems. We propose to conduct a broad scale literature review followed by a synthesis of available data, analysis and simulations with available downscaled climate scenarios to understand how recharge in the western US might respond to plausible climatic shifts during the rest of the 21st Century. We will produce an estimated range of impacts on groundwater...
thumbnail
Biological nitrogen fixation (BNF) is a critical biogeochemical process that converts inert atmospheric N2 gas into biologically usable forms of the essential nutrient nitrogen. A variety of free-living and symbiotic organisms carry out BNF, and in most regions worldwide, BNF is the largest source of nitrogen that fuels terrestrial ecosystems. As a result, BNF has far reaching effects on ecosystem properties (water quality, carbon storage), sustainability (plant growth, soil fertility), and the global climate system. Despite this cross-cutting importance, existing syntheses of BNF have major gaps, with particular challenges in upscaling local measurements across large areas. These gaps, and a corresponding lack...
thumbnail
A revolution is underway in seismology that transforms fiber-optic cables into arrays of thousands of seismic sensors. Compared to the traditional monitoring networks using inertial seismometers, the fiber-optic approach can increase the spatial data density by orders of magnitude and enable data processing methodologies that require a high-fidelity wavefield. The Working Group aims to advance the USGS, along with several academic and industry partners, towards effective utilization of fiber-optic sensing techniques to understand earthquake hazards and improve monitoring and real-time warning systems. We will conduct synthesis studies that demonstrate the potential gains for various applications, including earthquake...
thumbnail
Fibrous erionite, a zeolite mineral, has been designated as a human carcinogen by the World Health Organization and is believed to be the cause of extraordinarily high rates of malignant mesothelioma and other asbestos - related diseases in several villages in Central Turkey. A recent study by the University of Hawaii in collaboration with the U. S. Environmental Protection Agency in Dunn County, North Dakota has demonstrated similar human exposures to fibrous erionite as those in found in Turkey. The source of these exposures is an erionite - bearing volcanic tuff that has been mined, crushed, and used to gravel hundreds of miles of roads. While elevated rates of mesothelioma are not yet apparent in North Dakota,...
thumbnail
Natural resource managers are coping with rapid changes in both environmental conditions and ecosystems. Enabled by recent advances in data collection and assimilation, short-term ecological forecasting may be a powerful tool to help resource managers anticipate impending changes in ecosystem dynamics (that is, the approaching near-term changes in ecosystems). Managers may use the information in forecasts to minimize the adverse effects of ecological stressors and optimize the effectiveness of management actions. To explore the potential for ecological forecasting to enhance natural resource management, the U.S. Geological Survey (USGS) convened a workshop titled “Building capacity for Applied Short-Term Ecological...
thumbnail
Estimating species response to environmental change is a key challenge for ecologists and a core mission of the USGS. Effective forecasting of species response requires models that are detailed enough to capture critical processes and at the same time general enough to allow broad application. This tradeoff is difficult to reconcile with most existing methods. We propose to extend and combine existing models that operate at different scales and with different levels of data complexity into a modeling framework that will allow robust estimation of population response to environmental change across a species’ range. This integrated modeling is now possible with the increasing development and application of population...
thumbnail
Everyone needs clean drinking water in order to thrive. The US EPA and public water purveyors in the US work together in adherence with the Safe Drinking Water Act to make water safe for public consumption. The recent media coverage of lead in public drinking water supplies in Flint, Michigan, and schools in many cities with aging infrastructure throughout the US has raised public awareness of drinking water as a potential pathway of exposure to toxic chemicals. Epidemiologists and other researchers have conclusively shown that high arsenic levels in drinking water in Bangladesh, Taiwan, and South America cause adverse human health outcomes. However, research in study populations with levels of arsenic exposure...
thumbnail
Ecosystem services - the benefits that nature provides to society and the economy - are gaining increasing traction worldwide as governments and the private sector use them to monitor integrated environmental and economic trends. When they are well understood and managed, ecosystems can provide these long-term benefits to people - such as clean air and water, flood control, crop pollination, and recreational, cultural, and aesthetic benefits. Within the U.S. government, a memo issued by the White House Council on Environmental Quality in October 2015 charged agencies with incorporating these values in planning, investment, and regulatory processes. Natural capital accounting - a tool being used in dozens of countries...
thumbnail
The USGS “Did You Feel It” (DYFI) is an extremely popular way for members of the public to contribute to earthquake science and earthquake response. DYFI has been in operation for nearly two decades (1999-2019) in the U.S., and for nearly 15 years globally. During that period the amount of data collected is astounding: Over 5 million individual DYFI intensity reports—spanning all magnitude and distance ranges—have been amassed and archived. Several of these types of surveys have been developed by international seismological institutions as well and many of these institutions have implemented algorithms to interpret intensity evaluations automatically, as a rapid and easy way to obtain a geographical distribution...
thumbnail
Groundwater storage depletion is a critical issue for many of the major aquifers in the U.S., particularly during intense droughts. The GRACE (Gravity Recovery and Climate Experiment) satellites launched in 2002, with sensors designed to measure changes in the Earth’s gravitational field at large spatial scales (≥ ~200,000 km2). These changes are primarily driven by changes in water storage on the Earth’s surface. Estimates of groundwater storage changes based on these gravity measurements have attracted considerable media attention in the U.S. and globally. However, groundwater storage changes are computed indirectly by subtracting snow, surface water, and soil moisture storage from the total water storage monitored...
thumbnail
Resilience science provides a conceptual framework and methodology for quantitatively assessing the ability of a system to remain in a particular state. Probable non-linear ecological responses to global change, including climate change, require a clear framework for understanding and managing resilience. However, much of the resilience research to date has been qualitative in nature, and frameworks developed for the implementation of resilience science have been either vague or focused on the social component of social-ecological systems. Attempts to quantify resilience and operationalize the concept include the cross-scale resilience model, discontinuity theory and the early detection of leading indicators of...
thumbnail
The pervasive nature of insect species’ declines has led to the specter of an “Insect Armageddon” in the popular press. Insect-derived ecosystem services are valued at > $57 billion in the U.S. and thus the loss of insects has the potential to fundamentally disrupt natural and economic systems.The causes of insect declines have been linked to changes in climate, land use and pesticide use, but there is little consensus on the relative importance of these drivers. There is even less consensus about which species are at most risk and about how to mitigate declines and recover populations. Systematic evaluations of trends across insect taxa in North America are needed as there are none based on systematic monitoring...
Climate change is expected to have significant effects on the phenology of vectors of arthropod-borne diseases, particularly mosquitoes. However, forecasting the direction and magnitude of future phenological shifts requires a more detailed understanding of the climate drivers of mosquito phenology. Addressing this knowledge gap is particularly salient for mosquitoes, as they have the potential to affect human health through transmission of zoonotic disease. While models based on climate and mosquito life history have been created at local or regional scales, national-scale predictions of the timing of mosquito activity are not readily available for the U.S. Our workshop proposes to synthesize primary data on mosquito...