Skip to main content
Advanced Search

Filters: Tags: {"scheme":"none"} (X) > partyWithName: U.S. Geological Survey (X) > partyWithName: Water Resources (X)

160 results (281ms)   

View Results as: JSON ATOM CSV
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river discharge....
thumbnail
Using predicted lake temperatures from uncalibrated, process-based models (PB0) and process-guided deep learning models (PGDL), this dataset summarized a collection of thermal metrics to characterize lake temperature impacts on fish habitat for 881 lakes. Included in the metrics are daily thermal optical habitat areas and a set of over 172 annual thermal metrics.
thumbnail
A three-dimensional groundwater flow model using MODFLOW-NWT was developed to evaluate historical and potential stream capture in the lower Humboldt River Basin, Nevada. The Humboldt River Basin is the only river basin that is contained entirely within the state of Nevada. The effect of groundwater pumping on the Humboldt River is not well understood. Tools are needed to determine stream capture and manage groundwater pumping in the Humboldt River Basin. Previous work has demonstrated that the river’s surface-water resource is sensitive to groundwater withdrawals, which have steadily increased since the 1950s for agriculture, municipal, and mining uses. A numerical groundwater flow model was developed for the purpose...
thumbnail
The U.S. Geological Survey (USGS), at the request of the U.S. Army Environmental Command (USAEC), evaluated the capabilities of two borehole technologies to measure horizontal groundwater velocity and direction of flow in a parallel-plate fractured-rock simulator. A colloidal borescope flowmeter (HB) and a heat-pulse flowmeter (HH) were deployed in 4-inch and 6-inch inner-diameter simulated uncased wells that spanned 0.39- and 1.0-inch apertures with simulated groundwater velocities ranging from 2 to 958 feet per day. Measurements were made at the USGS Hydrologic Instrumentation Facility in the Hydraulics Laboratory and the Indianapolis office of the USGS Ohio-Kentucky-Indiana Water Science Center. Ten measurements...
thumbnail
The temperature and surface geophysical data contained in this release have primarily been collected to support groundwater/surface water methods development, and to characterize the hydrogeological controls on native brook trout habitat. All data have been collected since 2010 along the Quashnet River corridor located on Cape Cod, MA, USA. Cape Cod is a peninsula in southeastern coastal Massachusetts, USA, composed primarily of highly permeable unconsolidated glacial moraine and outwash deposits. The largest of the Cape Cod sole-source aquifers occupies a western (landward) section of the peninsula, and is incised by several linear valleys that drain groundwater south to the Atlantic Ocean via baseflow-dominated...
thumbnail
An existing, three-dimensional, transient groundwater-flow model of the Upper Charles River Basin, eastern Massachusetts, was modified to evaluate alternative groundwater-withdrawal scenarios on water levels in Kingsbury Pond. The pond is hydraulically connected to the groundwater-flow system, and water levels in the pond fluctuate in response to recharge to the aquifer from precipitation and wastewater return flows through septic systems, to withdrawals from the aquifer at nearby wells, and to precipitation directly on the pond surface. Concerns about the effects of groundwater withdrawals on water levels in the pond prompted an investigation by the U.S. Geological Survey (USGS) in cooperation with the Massachusetts...
thumbnail
A previously published MODFLOW-NWT groundwater-flow model for the Rush Springs aquifer in western Oklahoma (using 1 steady state stress period followed by 444 monthly stress periods representing 1979-2015; Ellis, 2018a) was used as the basis of several groundwater-use scenarios. The model is a 3-layer model including the Cloud Chief formation (confining unit of the Rush Springs aquifer), alluvial and terrace deposits, and the Rush Springs aquifer. The scenarios were used to assess the effects of increasing groundwater withdrawals from the Rush Springs aquifer on base flows to streams that flow into Fort Cobb Reservoir to address concerns over groundwater use reducing inflows to the lake. The effects of groundwater...
thumbnail
A three-dimensional groundwater flow model was developed in 1997 to evaluate the groundwater flow system at Puget Sound Naval Shipyard, Naval Base Kitsap, Bremerton, Washington (https://pubs.er.usgs.gov/publication/wri964147). In 2016, a regional groundwater flow model for the greater Kitsap Peninsula was developed (https://pubs.er.usgs.gov/publication/sir20165052). Using information from the 2016 regional model, the 1997 groundwater flow model for the Puget Sound Naval Shipyard was updated with a new interpretation of the underlying hydrogeologic units, a refined model grid, and improved recharge estimates. A steady-state model version was constructed in MODFLOW-NWT to simulate equilibrium conditions. MODPATH forward...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018 Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). A recently published extension of WRTDS allows users to separate these estimates into high- and low-flow conditions. This data release contains (1) a table of daily high- and low-flow concentration and load estimates for NTN stations between 1985 - 2018 and (2) an R file that contains...
thumbnail
A three-dimensional groundwater flow model, MODFLOW-OWHM, was developed to provide a better understanding of the hydrogeology of the Lucerne Valley Groundwater Basin, California. The model was used to investigate the historical groundwater storage loss and subsidence associated with anthropogenic groundwater demands. The model was calibrated to 1942 through 2016 conditions. This USGS data release contains all of the input and output files for the simulation described in the associated model documentation report https://doi.org/10.3133/sir20225048
thumbnail
The Rio Grande Transboundary Integrated Hydrologic Model (RGTIHM), which was originally developed by Hanson and others (2020) (https://doi.org/10.3133/sir20195120), was updated and recalibrated to minimize the biases in RGTIHM’s simulation of streamflow and to incorporate new estimates of historical agricultural consumptive use in the study area. The RGTIHM was developed through an interagency effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (Reclamation) to provide a tool for analyzing the hydrologic system response to the historical (March 1940 through 2014) evolution of water use and potential changes in water supplies and demands in the Hatch Valley (also known as Rincon Valley...
thumbnail
Benthic diatom assemblages are known to be indicative of water quality but have yet to be widely adopted in biological assessments in the United States due to several limitations. Our goal was to address some of these limitations by developing regional multi-metric indices (MMIs) that are robust to inter-laboratory taxonomic inconsistency, adjusted for natural covariates, and sensitive to a wide range of anthropogenic stressors. We aggregated bioassessment data from two national-scale federal programs and used a data-driven analysis in which all-possible combinations of 2-7 metrics were compared for three measures of performance. The datasets in this release support the Carlisle, et al. 2022 report cited herein....
thumbnail
Daily lake surface temperatures estimates for 185,549 lakes across the contiguous United States from 1980 to 2020 generated using an entity-aware long short-term memory deep learning model. In-situ measurements used for model training and evaluation are from 12,227 lakes and are included as well as daily meteorological conditions and lake properties. Median per-lake estimated error found through cross validation on lakes with in-situ surface temperature observations was 1.24 °C. The generated dataset will be beneficial for a wide range of applications including estimations of thermal habitats and the impacts of climate change on inland lakes.
Categories: Data; Tags: AL, AR, AZ, Alabama, Aquatic Biology, All tags...
thumbnail
A three-dimensional groundwater flow model (MODFLOW-NWT) of the Columbia Plateau Regional aquifer (CPRAS) in Washington, Oregon, and Idaho was developed to provide an integrated understanding of the hydrologic system to implement effective water-resource management strategies. The U.S. Geological Survey (USGS) Groundwater Resources Program assessed the groundwater availability as part of a national study of regional systems (https://pubs.usgs.gov/circ/1323/). The CPRAS assessment includes the status of groundwater resources, how these resources have changed over time, and development and application of tools to estimate system responses to stresses from future uses and climate variability and change. A major product...
thumbnail
A three-dimensional groundwater flow model, constructed in MODFLOW-NWT, was developed to evaluate the groundwater flow system near Puget Sound, Pierce and King Counties, Washington. A steady-state model version was constructed to simulate equilibrium conditions, while a transient model version was constructed to simulate monthly variability from January 2005 to December 2015. The model was used to simulate several hydrologic scenarios. This data release contains the input and output files for the simulations described in the associated model documentation report (https://doi.org/10.3133/sir20XXXXXX).
thumbnail
This dataset is a point shapefile of wells measured for the potentiometric surface maps of the Mississippi River Valley alluvial aquifer (MRVA) in Spring 2016, 2018, and 2020. The data provided for each well considered in the applicable potentiometric surface map are the water-level date, altitude [relative to the North American vertical datum of 1988 (NAVD88)], a useYYYY code (which is positive if the water level was used in the potentiometric surface map for that year), a use comment (which is populated for water levels not used), and the water-level change values, for 2016-18, 2018-20, and 2016-20 for water levels with positive useYYYY codes for the applicable years. The data provided for each streamgage considered...
thumbnail
This dataset is a raster surface, in feet, of the depth to water, spring 2020, Mississippi River Valley alluvial aquifer (MRVA). The raster cell size is 1,000 meters (3,280.8 ft). The raster was interpolated using (1) depth-to-water (GW_D2W) data from wells and (2) an assumed value of zero for depth to water at streamgages (SW_D2W) because the precise depth to groundwater at the streamgage is not known..The streamgage data is used only when it appears the regional aquifer and surface water are hydrologically connected.
thumbnail
Observed water temperatures from 1980-2018 were compiled for 877 lakes in Minnesota (USA). There were four lakes included in this data release that did not have temperature observations available at the time of compilation or these data existed elsewhere and were unknown to the compilation team. These data were used as training, test, and error-estimation data for process-guided deep learning models and the evaluation of process-based models. The data are formatted as a single csv (comma separated values) file with attributes corresponding to the unique combination of lake identifier, time, and depth. Data came from a variety of sources, including the Water Quality Portal, the North Temperate Lakes Long-Term Ecological...
thumbnail
These data are bathymetry (river bottom elevation) in XYZ format, generated from the April 4-5, 2017, bathymetric survey of the Rolling Fork and Beech Fork near Boston, Kentucky. The bathymetry was collected from approximately 1.9 miles upstream from Kentucky State Highway 62 on the Beech Fork and approximately 1.5 miles upstream from Kentucky State Highway 62 on the Rolling Fork, to 2.6 miles downstream from Kentucky State Highway 62 on the Rolling Fork. Hydrographic data were collected using an acoustic Doppler current profiler (ADCP) with integrated Differential Global Positioning System (DGPS). Data were collected as the surveying vessel traversed the river, approximately perpendicular to the velocity vectors...


map background search result map search result map Bathymetry on the Rolling Fork and Beech Fork near Boston, Kentucky, April 4-5, 2017 Temperature and geophysical data collected along the Quashnet River, Mashpee/Falmouth MA (ver. 2.0, March 2020) Laboratory Assessment of Colloidal Borescope and Heat-Pulse Flowmeters in Measuring Horizontal Flow in Fractured-Rock Simulators Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 2 Water temperature observations Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 7 thermal and optical habitat estimates F04_wlc161820_Water-level change, spring to spring, 2016-18, 2018-20, 2016-20, Mississippi River Valley alluvial aquifer, in feet Chesapeake Bay Nontidal Network 1985 – 2018: Daily High-Flow and Low-Flow Concentration and Load Estimates (ver. 1.1, November 2021) Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 3 Model inputs Daily surface temperature predictions for 185,549 U.S. lakes with associated observations and meteorological conditions (1980-2020) F03_d2w2020_Depth to water, spring 2020, Mississippi River Valley alluvial aquifer, raster format, in feet Data Release for: A Web-Based Tool for Assessing the Condition of Benthic Diatom Assemblages in Streams and Rivers of the Conterminous United States MODFLOW One-Water Hydrologic Flow Model (MF-OWHM) used to simulate conjunctive use in the Hatch Valley and Mesilla Basin, New Mexico and Texas, United States, and northern Chihuahua, Mexico MODFLOW-OWHM model used to simulate groundwater flow and evaluate storage in the Lucerne Valley Groundwater Basin, California MODFLOW-NWT model to simulate the groundwater flow system near Puget Sound, Pierce and King Counties, Washington MODFLOW-NWT model used to evaluate groundwater withdrawal scenarios for the Rush Springs aquifer upgradient from the Fort Cobb Reservoir, western Oklahoma, 1979-2015, including streamflow, base flow, and precipitation statistics MODFLOW-NWT model used to evaluate the groundwater availability of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho MODFLOW-2000 and Management-Optimization Models Used to Evaluate Alternative Groundwater-Withdrawal Scenarios on Water Levels in Kingsbury Pond, Upper Charles River Basin, Eastern Massachusetts MODFLOW-NWT model to simulate the groundwater flow system at Puget Sound Naval Shipyard, Naval Base Kitsap, Bremerton, Washington MODFLOW-NWT Model Used to Evaluate Stream Capture Related to Groundwater Pumping, Lower Humboldt River Basin, Nevada (ver. 1.1, March 2024) Bathymetry on the Rolling Fork and Beech Fork near Boston, Kentucky, April 4-5, 2017 Temperature and geophysical data collected along the Quashnet River, Mashpee/Falmouth MA (ver. 2.0, March 2020) MODFLOW-NWT model to simulate the groundwater flow system at Puget Sound Naval Shipyard, Naval Base Kitsap, Bremerton, Washington MODFLOW-2000 and Management-Optimization Models Used to Evaluate Alternative Groundwater-Withdrawal Scenarios on Water Levels in Kingsbury Pond, Upper Charles River Basin, Eastern Massachusetts MODFLOW-OWHM model used to simulate groundwater flow and evaluate storage in the Lucerne Valley Groundwater Basin, California MODFLOW-NWT model to simulate the groundwater flow system near Puget Sound, Pierce and King Counties, Washington MODFLOW-NWT Model Used to Evaluate Stream Capture Related to Groundwater Pumping, Lower Humboldt River Basin, Nevada (ver. 1.1, March 2024) MODFLOW One-Water Hydrologic Flow Model (MF-OWHM) used to simulate conjunctive use in the Hatch Valley and Mesilla Basin, New Mexico and Texas, United States, and northern Chihuahua, Mexico MODFLOW-NWT model used to evaluate groundwater withdrawal scenarios for the Rush Springs aquifer upgradient from the Fort Cobb Reservoir, western Oklahoma, 1979-2015, including streamflow, base flow, and precipitation statistics MODFLOW-NWT model used to evaluate the groundwater availability of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) Chesapeake Bay Nontidal Network 1985 – 2018: Daily High-Flow and Low-Flow Concentration and Load Estimates (ver. 1.1, November 2021) Laboratory Assessment of Colloidal Borescope and Heat-Pulse Flowmeters in Measuring Horizontal Flow in Fractured-Rock Simulators F04_wlc161820_Water-level change, spring to spring, 2016-18, 2018-20, 2016-20, Mississippi River Valley alluvial aquifer, in feet F03_d2w2020_Depth to water, spring 2020, Mississippi River Valley alluvial aquifer, raster format, in feet Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 7 thermal and optical habitat estimates Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 2 Water temperature observations Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 3 Model inputs Daily surface temperature predictions for 185,549 U.S. lakes with associated observations and meteorological conditions (1980-2020) Data Release for: A Web-Based Tool for Assessing the Condition of Benthic Diatom Assemblages in Streams and Rivers of the Conterminous United States