Skip to main content
Advanced Search

Filters: Tags: {"type":"CMS Non-theme Topics","name":"aquifer mapping"} (X)

176 results (31ms)   

View Results as: JSON ATOM CSV
thumbnail
Using publicly available data for Albany and Schenectady counties, New York, a series of geospatial overlays were created at 1:24,000 scale to examine the bedrock geology, groundwater table, soils, and surficial geology. Bedrock and surficial geology were refined using extant bedrock maps, well and borehole data from water- and gas-wells, soil data, and lidar data. Groundwater data were collected from New York State Department of Environmental Conservation and U.S. Geological Survey water-well databases to estimate the groundwater table. Soil data were used to examine soil thickness over bedrock and infiltration. An inventory of closed depressions was created using reconditioned lidar-derived bare-earth digital...
thumbnail
Using publicly available data for Erie and Niagara counties, New York, a series of geospatial overlays were created at 1:24,000 scale to examine the bedrock geology, groundwater table, soils, and surficial geology. Bedrock and surficial geology were refined using extant bedrock maps, well and borehole data from water- and gas-wells, soil data, and lidar data. Groundwater data were collected from New York State Department of Environmental Conservation and U.S. Geological Survey water-well databases to estimate the groundwater table. Soil data were used to examine soil thickness over bedrock and infiltration. An inventory of closed depressions was created using reconditioned lidar-derived bare-earth digital elevation...
thumbnail
Publicly available geospatial data were identified, collated, and analyzed for a region of karst terrain extending from Albany to Buffalo, New York. A series of geospatial datasets were assembled to determine the location and extent of karstic rock; bedrock geology and depth to bedrock; average water-table configuration; surficial geology; soil type, thickness, and hydraulic conductivity; land cover; and closed depressions in the land surface First release: 2021 Revised: July 2022 (ver. 2.0) Revised: October 2022 (ver. 3.0) Revised: January 2024 (ver. 4.0)
thumbnail
This data release contains motorboat-towed floating transient electromagnetic data collected from the Columbia River near Hanford WA. Data were collected using a ~16 foot (4.9 meters) outboard motorboat during two field campaigns: July 2021 and April 2022. In total, several hundred linear kilometers of data were collected from a reach of the Columbia that extends from approximately Vernita Bridge to Richland, WA with some additional data collected in the Horn area north of White Bluffs in April 2022. An Aarhus Geoinstruments FloaTEM system was used to collect these data. The depth of investigation of the FloaTEM system is variable but ranged from approximately 50 to 100 meters. Previously collected high-resolution...
thumbnail
The U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation, the Tug Hill Commission, the Jefferson County Soil and Water Conservation District, the Oswego County Soil and Water Conservation District, and the Tug Hill Land Trust studied the northern and central parts of the Tug Hill glacial aquifer to help communities make sound decisions about the groundwater resource. This child item dataset contains locations of water level contours for the northern and central parts of the Tug Hill aquifer.
thumbnail
In 2011, the U.S. Geological Survey, in cooperation with the Town of Newfield and the Tompkins County Planning Department, began a study of the stratified-drift aquifers in the West Branch Cayuga Inlet and Fish Kill valleys in the Town of Newfield, Tompkins County, New York. The objective of this study was to characterize the hydrogeology and water quality of the stratified-drift aquifers in the West Branch Cayuga Inlet and Fish Kill valleys and produce a summary report of the findings. This dataset contains locations of unconfined aquifer boundaries in West Branch Cayuga Inlet and Fish Kill Valleys, Newfield, Tompkins County, New York.
thumbnail
This folder contains the raw and processed TEM data and inverted soundings showing resistivity (in ohm-m) with depth for all survey sites that were part of transect 1. In October and November 2016-2017, transient electromagnetic (TEM) data, also called time domain electromagnetic (TDEM) surveys, were acquired at 120 locations in the Genesee Valley, Livingston County, in New York, in order to characterize the subsurface resistivity structure in support of a U.S. Geological Survey groundwater investigation. The TEM data were collected as part of a project to evaluate geophysical methods to characterize the valley-fill sediments, underlying bedrock, and salinity of the subsurface. TEM data were collected using an ABEM...
thumbnail
A digital representation of closed depression features overlying and adjacent to New York’s carbonate-bedrock aquifers. Includes closed depressions that are both natural and anthropogenic in origin. The features were derived from a digital contour database obtained from https://topotools.cr.usgs.gov/contour_data.php. The original contour dataset was generated from the National Elevation Dataset (NED) and the National Hydrography Dataset (NHD) in a fully automated process. The process is described in U.S. Geological Survey Scientific Investigations Report 2012–5167.
thumbnail
In October and November 2016-2017, transient electromagnetic (TEM) data, also called time domain electromagnetic (TDEM) surveys, were acquired at 120 locations in the Genesee Valley, Livingston County, New York, in order to characterize the subsurface resistivity structure in support of a U.S. Geological Survey groundwater investigation. The TEM data were collected as part of a project to evaluate geophysical methods to characterize the valley-fill sediments, underlying bedrock, and salinity of the subsurface. TEM data were collected using an ABEM WalkTEM unit (acquisition software V 1.1.0 and newer) using two transmitter loop (Tx) sizes, 100 by 100 meter square and 40 by 40 meters square, a center-loop receiver...
thumbnail
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
thumbnail
This dataset includes well logs used in the creation of the Cortland hydrogeologic framework. Well logs were used from multiple sources (DEC, DOT, NWIS) and were a crucial component in generating hydrogeologic layer elevations and thicknesses. Well logs are available in their original form on GeoLog Locator (https://webapps.usgs.gov/GeoLogLocator/#!/) and provided here in the digitized form (shapefiles and feature classes), which were used in the generation of the hydrogeologic framework.
thumbnail
Digital hydrogeologic datasets were developed for the Rondout-Neversink study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters, lidar minimum elevation raster, lacustrine extent polygon, valley-fill extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot discretization to match the model grid cell size.
thumbnail
This dataset includes well logs used in the creation of the Olean hydrogeologic framework. Well logs were used from multiple sources (DEC, DOT, NWIS, ESOGIS, and recently digitized archived material) and were a crucial component in generating hydrogeologic layer elevations and thicknesses. Well logs are available in their original form on GeoLog Locator (https://webapps.usgs.gov/GeoLogLocator/#!/) and provided here in the digitized form (shapefiles and feature classes), which were used in the generation of the hydrogeologic framework.
thumbnail
This dataset includes "smoothing points" used in the creation of the Jamestown hydrogeologic framework. Smoothing points were manually added and were used to enhance interpolated layers using geologic assumptions and include: valley edge points, centerline bedrock points, and upland bedrock SSURGO points.
The town of Greene is located in Chenango County, New York. Previous USGS reports here include Open-File Report 2003-242 (Hetcher and others, 2003), and Scientific Investigations Map 2914 (Hetcher-Aguila and Miller, 2005). The five child pages below break the data up into georeferenced and digitized previous report data, interpreted geologic information, well logs, supplemental point data, and interpolation statistics.
thumbnail
This child item dataset contains a single horizontal-to-vertical spectral ratio (HVSR) measurement from Delaware County, New York, DHVSR8. Raw and processed HVSR data for this HVSR measurement are included in a zipped directory named by the measurement site identifier. The HVSR data-collection sites are designated by a county sequential numbering system (DHVSR8, etc. where "D" indicates Delaware County).
thumbnail
The U.S. Geological Survey (USGS) is providing a polygon feature class delineating the extent of Glacial Lake Great Bend within the Binghamton East 1:24,000 quadrangle of south-central Broome County, New York, 2020. The shapefile was created and intended for use with geographic information system (GIS) software. A companion report, USGS Scientific Investigations Report 2021-5026 (Van Hoesen and others, 2021; https://doi.org/10.3133/sir20215026) further describes data collection and map preparation.


map background search result map search result map Digital Contour Database of Closed Depressions Time-domain electromagnetic soundings to delineate saline groundwater in the Genesee valley-fill aquifer system, New York (2016-2017) Geospatial Data to Assess Karst Aquifer Systems Between Albany and Buffalo, New York (ver. 4.0, January 2024) Glacial Lake Great Bend within the Susquehanna River Valley in South-Central Broome County, Towns of Conklin and Kirkwood, New York Aquifer boundary (unconfined) in West Branch Cayuga Inlet and Fish Kill Valleys, Newfield, Tompkins County, New York Bedrock elevation contours beneath main valleys in the Oneonta area, Otsego and Delaware Counties, New York Inferred dead-ice sink locations in the Oneonta area, Otsego and Delaware Counties, New York Oneonta study area, Otsego and Delaware Counties, New York Transect 1 time-domain electromagnetic soundings to delineate saline groundwater in the Genesee valley-fill aquifer system, New York (2016-2017) Well Logs for the Cortland sourcewater study area in upstate New York Rondout Neversink study area hydrogeologic framework layers Geospatial datasets to assess karst aquifer systems in Albany and Schenectady counties, New York Delaware County, New York: Horizontal-to-Vertical Spectral Ratio (HVSR) Soundings (2010) Supplementary Points for the Jamestown sourcewater study area in upstate New York Well Logs for the Olean sourcewater study area in upstate New York Interpolation statistics for the Fishkill and Wappinger Falls sourcewater study area in upstate New York Tug Hill Glacial Aquifer Water Level Contours Geospatial datasets to assess karst aquifer systems in Erie and Niagara counties, New York Floating Transient Electromagnetic Survey Data from the Columbia River near Hanford, WA Aquifer boundary (unconfined) in West Branch Cayuga Inlet and Fish Kill Valleys, Newfield, Tompkins County, New York Glacial Lake Great Bend within the Susquehanna River Valley in South-Central Broome County, Towns of Conklin and Kirkwood, New York Bedrock elevation contours beneath main valleys in the Oneonta area, Otsego and Delaware Counties, New York Inferred dead-ice sink locations in the Oneonta area, Otsego and Delaware Counties, New York Oneonta study area, Otsego and Delaware Counties, New York Tug Hill Glacial Aquifer Water Level Contours Rondout Neversink study area hydrogeologic framework layers Well Logs for the Olean sourcewater study area in upstate New York Well Logs for the Cortland sourcewater study area in upstate New York Geospatial datasets to assess karst aquifer systems in Albany and Schenectady counties, New York Floating Transient Electromagnetic Survey Data from the Columbia River near Hanford, WA Geospatial datasets to assess karst aquifer systems in Erie and Niagara counties, New York Supplementary Points for the Jamestown sourcewater study area in upstate New York Delaware County, New York: Horizontal-to-Vertical Spectral Ratio (HVSR) Soundings (2010) Interpolation statistics for the Fishkill and Wappinger Falls sourcewater study area in upstate New York Geospatial Data to Assess Karst Aquifer Systems Between Albany and Buffalo, New York (ver. 4.0, January 2024) Digital Contour Database of Closed Depressions