Skip to main content
Advanced Search

Filters: Tags: {"type":"ISO 19115 Topic Categories"} (X)

1,858 results (277ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=ISO 19115 Topic Categories )
View Results as: JSON ATOM CSV
thumbnail
Information on the nature and distribution of permafrost is critical to assessing the response of Arctic ecosystems to climate change, because thawing permafrost under a warming climate will cause thaw settlement and affect micro-topography, surface water redistribution and groundwater movement, soil carbon balance, trace gas emissions, vegetation changes, and habitat use. While a small-scale regional permafrost map is available, as well as information from numerous site-specific large-scale mapping projects, landscape-level mapping of permafrost characteristics is needed for regional modeling and climate impact assessments. The project addresses this need by: (1) compiling existing soil/permafrost data from available...
Speaker: Dr. Jason Kreitler, USGSWednesday, October 24, 2012 -12:00pm to 1:00pmThis project is analyzing downscaled climate model data to assess the geography of climate change at scales relevant to actual conservation actions. This work analyzes the California Essential Habitat Connectivity products to determine which protected lands are most vulnerable and which of the proposed corridors would partially mitigate climate change threats.
This project established a permafrost monitoring network in this region, providing a baseline of permafrost thermal regimes for assessing future change at a total of 26 automated monitoring stations. Stations have collected year-round temperature data from the active layer and the permafrost starting from the summer of 2011. The strong correspondence between spatial variability in permafrost thermal regime and an existing ecotype map allowed for the development of a map of ‘permafrost thermal classes’ for the broader study region. Further, the annual temperature data was used to calibrate models of soil thermal regimes as a function of climate, providing estimates of both historic and future permafrost thermal regimes...
Website: “Climate Change Refugia” website features a dynamic, interactive refugia map and all deliverables
This project resulted in an extensive mapping of coastal change along the entire coastline of the Western Alaska Landscape Conservation Cooperative (LCC). The work provides important baseline information on the distribution and magnitude of landscape changes over the past 41 years. The extent of change to the coastline and to coastal features, such as spits, barrier islands, estuaries, tidal guts and lagoons, was known to be substantial in some areas along the coast (e.g., portions of the Yukon–Kuskokwim Delta), although the extent of change along the full Bering Sea coast was not well documented. With this analysis, changes can be summarized for different land ownerships or other units to assess the extent of recent...
Categories: Data; Tags: BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, COASTAL AREAS, All tags...
This project resulted in an extensive mapping of coastal change along the entire coastline of the Western Alaska Landscape Conservation Cooperative (LCC). The work provides important baseline information on the distribution and magnitude of landscape changes over the past 41 years. The extent of change to the coastline and to coastal features, such as spits, barrier islands, estuaries, tidal guts and lagoons, was known to be substantial in some areas along the coast (e.g., portions of the Yukon–Kuskokwim Delta), although the extent of change along the full Bering Sea coast was not well documented. With this analysis, changes can be summarized for different land ownerships or other units to assess the extent of recent...
Categories: Data; Tags: BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, COASTAL AREAS, All tags...
thumbnail
The Arctic Tern completes annual epic migrations from pole to pole covering at least 40,000 kmon their round-trip journeys. They breed throughout Arctic Alaska from boreal to tundra habitatsand have their highest nesting densities inland (Lensink 1984). Arctic Terns typically choose nestsites on open ground near water and often on small islands in ponds and lakes (Hatch 2002).Arctic terns consume a wide variety of fish and invertebrate prey, fish are particularly importantduring the breeding season for feeding young (Hatch 2002). This species spends their winters(austral summers) in offshore waters near Antarctica (Hatch 2002). Alaskan Arctic Coastal Plainpopulation estimates from 2011 range from 7-12,000 (Larned...
Nearshore bathymetry is a vital link that joins offshore water depths to coastal topography. Seamless water depth information is a critical input parameter for reliable storm surge models, enables the calculation of sediment budgets and is necessary baseline data for a range of coastal management decisions. Funding from the Western Alaska LCC resulted in the purchase of field equipment capable of shallow water measurements in rural settings, allowing collection of nearshore bathymetry around western Alaska communities. The resulting vector data shape files of nearshore bathymetry for Gambell, Savoonga, Golovin, Wales, Shismaref, and Hooper Bay are available by following the link below.
thumbnail
The Red-necked Phalarope commonly breeds in both the Brooks Range foothills and ArcticCoastal Plain of Alaska. In Alaska, this species typically nests in wet tundra near water’s edge.It differs from the Red Phalarope in that it breeds further inland and at higher elevations (Rubegaet al. 2000). Like other phalaropes, this species depends on aquatic food sources for much of itsdiet (Rubega et al. 2000). Red-necked Phalaropes spend winter at sea in tropical waters in largenumbers off the west coast of South America (Rubega et al. 2000). Current North Americanpopulation estimate is 2.5 million with a declining trend (Morrison et al. 2006).
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014, 2016). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience...
This dataset contains monthly average hours of fog and low cloud cover (FLCC) per day for North and Central Coastal California. The set of 42 grids has one for each summer month (June, July, August, and September) for each year (1999 - 2009), except for 2 missing months (June 2001 and August 2006) . Grid cell values were calculated using eleven years of hourly, day and night, cloud maps derived from geostationary operational environmental satellite (GOES) images collected and processed by the Cooperative Institute for Research in the Atmosphere (CIRA).For more information about this data and the Pacific Coastal Fog Project, see http://geography.wr.usgs.gov/fog (link is external) (link is external) and this article...
This project will address species-habitat relationships for a priority aquatic system for the GCPO LCC, Mainstem Big Rivers. Specifically, the project will collect subsurface aquatic habitat data using side-scan sonar and high resolution bathymetry data in the Pearl River system of Louisiana. This project expands on current work ongoing in the Pearl River, and would extend habitat data collection for the purposes of making recommendations on restoration of aquatic habitat for species endpoints in this aquatic system. This project directly addresses landscape conservation design and will be used to inform Adaptation Strategies.
Kristin Byrd presented how this project aids conservation of California rangelands by identifying future integrated threats of climate change and land use change, and will quantify two main co-benefits of rangeland conservation – water supply and carbon sequestration. Through a multi-stakeholder partnership, the project proponents will develop integrated climate change/land use change scenarios for the Central Valley and Chaparral and Oak Woodland eco-regions, and disseminate information about future potential threats to high priority conservation areas within the California Rangeland Conservation Coalition (CRCC) study area, which includes the foothills around the Central Valley and most of the southern Inner Coast...
This insert into the February 2013 Estuary news offers snapshots of how seven CA LCC projects have been laying the foundations for lasting cooperative conservation partnerships.
In 2010 the U.S. Geological Survey (USGS), Coastal and Marine Geology Program completed three cruises to map the bathymetry of the main channel and shallow intertidal mudflats in the southernmost part of south San Francisco Bay. The three surveys were merged to generate comprehensive maps of Coyote Creek (from Calaveras Point east to the railroad bridge) and Alviso Slough (from the bay to the town of Alviso) to establish baseline bathymetry prior to the breaching of levees adjacent to Alviso and Guadalupe Sloughs as part of the South Bay Salt Pond Restoration Project (http://www.southbayrestoration.org). Since 2010 we have conducted four additional surveys to monitor bathymetric change in this region as restoration...
thumbnail
This project used species distribution modeling to assess the risk to habitat change under various climate change scenarios for rare plants. To predict the response of rare plant species to climate change, the project modeled the current distribution of the species using climate and environmental data (e.g., soils, disturbance, land-use), use these models to predict the species distribution given climate change, calculate current and future range size, calculate the amount of overlap of predicted future distribution with current distribution, and assess where barriers and protected areas are located with reference to the change in species distribution. Given the results of the distribution modeling, each species...
Previous California Landscape Cooperative (CA LCC) funding for our project titled, “A Broad - Scale, Multi - Species Monitoring Protocol to Assess Wintering Shorebird Population Trends in Response to Future Land Use and Climate Change” resulted in the development and implementation of a CA LCC - wide monitoring program for shorebirds – The Pacific Flyway Shorebird Survey (PFSS; www.prbo.org/pfss ). The PFSS has led to centralized databases in the California Avi an Data Center ( CADC; www.prbo.org/cadc) , the quantification of the distribution, abundance and variability in shorebird habitat in the Central Valley, the development of shorebird habitat association models, online data summary applications available to...


map background search result map search result map Assessing and Mapping Rare Plant Species Vulnerability to Climate Change Southeast Conservation Adaptation Strategy (SECAS) Presentations - 2017 Red-necked Phalarope Arctic Tern Permafrost Database Development, Characterization, and Mapping for Northern Alaska Assessing and Mapping Rare Plant Species Vulnerability to Climate Change Red-necked Phalarope Arctic Tern Permafrost Database Development, Characterization, and Mapping for Northern Alaska Southeast Conservation Adaptation Strategy (SECAS) Presentations - 2017