Skip to main content
Advanced Search

Filters: Tags: {"type":"ISO 19115 Topic Category","name":"geoscientificinformation"} (X)

170 results (114ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=ISO 19115 Topic Category )
View Results as: JSON ATOM CSV
thumbnail
Low-altitude (80 and 100 meters above ground level) digital images were collected at Sage Lot Pond in Waquoit, Massachusetts, two sites on the Mill River in Taunton, MA, Great Marsh in Barnstable, MA, the Wells National Estuarine Research Reserve in Wells, ME, and on the Woods Hole Oceanographic Institution Quissett Campus in Woods Hole, MA using 3DR Solo unoccupied aircraft systems (UAS) during 2018. These images were collected to support science and data needs in wetland research, topographic mapping, and landcover detection at the U.S. Geological Survey Woods Hole Coastal and Marine Science Center. The imagery and associated ground control points can be used to create Digital Elevation Models (DEMs), orthoimages,...
thumbnail
Low-altitude (80 and 100 meters above ground level) digital images were collected at Sage Lot Pond in Waquoit, Massachusetts, two sites on the Mill River in Taunton, MA, Great Marsh in Barnstable, MA, the Wells National Estuarine Research Reserve in Wells, ME, and on the Woods Hole Oceanographic Institution Quissett Campus in Woods Hole, MA using 3DR Solo unoccupied aircraft systems (UAS) during 2018. These images were collected to support science and data needs in wetland research, topographic mapping, and landcover detection at the U.S. Geological Survey Woods Hole Coastal and Marine Science Center. The imagery and associated ground control points can be used to create Digital Elevation Models (DEMs), orthoimages,...
thumbnail
Concerns about the influence of climate change on biota have emerged over the past decade, and responses in species populations and distribution patterns have already been documented (Parmesan 1996, Thomas and Lennon 1999). Current climates and communities will not simply migrate, but rather will re-form in novel ways over time (Fox 2007; Hunter et al. 1988; Williams and Jackson 2007). Due to the uncertainty of future climatic patterns and species responses, enduring features of the landscape (geophysical settings) are appropriate targets of assessment, planning, and conservation (Anderson and Ferree 2010, Beier and Brost 2010, Brost and Beier 2012; Hunter et al. 1988). Only recently have enduring features been...
thumbnail
Low-altitude (70 m above ground level) aerial images were collected over five areas of interest within the northern portion of Assateague Island National Seashore (ASIS) in mid-October, 2022. These images were collected to generate photogrammetric products (e.g. digital surface model (DSM), reflectance orthomosaic) to support science and data needs of National Park managers attempting to locate invasive Phragmites australis expansion. A DJI Matrice 600 uncrewed aircraft system (UAS) was equipped with a MicaSense Altum-PT multispectral camera and a Ricoh GRII true-color RGB camera to collect images simultaneously with sufficient overlap for photogrammetric processing. Ground control points (GCPs), black and white...
thumbnail
Low-altitude (70 m above ground level) aerial images were collected over five areas of interest within the northern portion of Assateague Island National Seashore (ASIS) in mid-October, 2022. These images were collected to generate photogrammetric products (e.g. digital surface model (DSM), reflectance orthomosaic) to support science and data needs of National Park managers attempting to locate invasive Phragmites australis expansion. A DJI Matrice 600 uncrewed aircraft system (UAS) was equipped with a MicaSense Altum-PT multispectral camera and a Ricoh GRII true-color RGB camera to collect images simultaneously with sufficient overlap for photogrammetric processing. Ground control points (GCPs), black and white...
thumbnail
This project evaluates the connections between climate change impacts and health in Bristol Bay communities. Climate change impacts were assessed through the lens of public health, with an eye towards the potential effects on disease, injury, food and water security, and mental health. Three focal communities were included in this assessment: Nondalton, a lake community, Levelock, a river community, and Pilot Point, a coastal community. The resulting assessment reports will be used to assist focal communities, as well as neighboring communities, in addressing climate-change related issues.
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: CLIMATE CHANGE IMPACT ASSESSMENT MODELS, CLIMATE CHANGE IMPACT ASSESSMENT MODELS, COASTAL AREAS, COASTAL AREAS, Decision Support, All tags...
Nearshore bathymetry is a vital link that joins offshore water depths to coastal topography. Seamless water depth information is a critical input parameter for reliable storm surge models, enables the calculation of sediment budgets and is necessary baseline data for a range of coastal management decisions. Funding from the Western Alaska LCC resulted in the purchase of field equipment capable of shallow water measurements in rural settings, allowing collection of nearshore bathymetry around western Alaska communities. The resulting vector data shape files of nearshore bathymetry for Gambell, Savoonga, Golovin, Wales, Shismaref, and Hooper Bay are available by following the link below.
The western coastline of Alaska spans over 10,000 km of diverse topography ranging from low lying tundra in the north to sharp volcanic relief in the south. Included in this range are areas highly susceptible to powerful storms which can cause coastal flooding, erosion and have many other negative effects on the environment and commercial efforts in the region. In order to better understand the multi-scale and interactive physics of the deep ocean,continental shelf, near shore, and coast, a large unstructured domain hydrodynamic model is being developed using the finite element, free surface circulation code ADCIRC.This model is a high resolution, accurate, and robust computational model of Alaska’s coastal environment...
thumbnail
Understanding the causes of relative sea level rise requires knowledge of changes to both land (uplift and subsidence) and sea level. However, measurements of coastal uplift or subsidence are almost completely lacking in western Alaska. This project provided precise measurements of prioritized benchmarks across the Western Alaska geography, improving the network of published tidal benchmark elevations, allowing for tidal datum conversion in more places, and providing a necessary component for improved inundation studies in coastal communities and low-lying areas. The project’s map of vertical velocities (uplift/subsidence) of western Alaska (see ‘Final Project Report’ & ‘Vertical Velocity Map’, below) will be combined...
Understanding the causes of relative sea level rise requires knowledge of changes to both land (uplift and subsidence) and sea level. However, measurements of coastal uplift or subsidence are almost completely lacking in western Alaska. This project provided precise measurements of prioritized benchmarks across the Western Alaska geography, improving the network of published tidal benchmark elevations, allowing for tidal datum conversion in more places, and providing a necessary component for improved inundation studies in coastal communities and low-lying areas. The project’s map of vertical velocities (uplift/subsidence) of western Alaska (see ‘Final Project Report’ & ‘Vertical Velocity Map’, below) will be combined...
This project used previously collected ShoreZone imagery to map nearly 1,600 km of coastline between Wales and Kotzebue. With additional mapping supported by the Arctic LCC and National Park Service, this effort completed the Kotzebue Sound shoreline, which now has been included in the state-wide ShoreZone dataset. The complete ShoreZone dataset for the region was used to conduct a coastal hazards analysis and create maps that identify areas undergoing rapid coastal erosion and areas that are sensitive to inundation by storm surge and sea level rise
Categories: Data; Tags: BEACHES, BEACHES, COASTAL AREAS, COASTAL AREAS, COASTAL LANDFORMS, All tags...
The compilation of an accurate and contemporary digital shoreline for Alaska is an important step in understanding coastal processes and measuring changes in coastal storm characteristics. Consistent with efforts by the United States National Park Service (NPS) at Bering Land Bridge National Preserve (BELA) and Cape Krusenstern National Monument, high quality, defensible digital shoreline datasets are under development for select coastal parks in the State of Alaska. Near BELA, for the area from Cape Prince of Wales to Cape Espenberg, extended revised shoreline coverage can be produced using true color coastal shoreline imagery to update the boundary demarking the mean high water (MHW) shoreline, which represents...
The Integrated Ecosystem Model (IEM) for Alaska and Northwest Canada Project integrated existing models of vegetation, disturbance, and permafrost into one complete ecosystem model for the state of Alaska and Northwest Canada.The final synchronized model will integrate existing climate, vegetation, disturbance, hydrology, and permafrost models to improve understanding of potential landscape, habitat and ecosystem change. The project’s (September 1, 2011 through August 31, 2016) primary goal was to develop the IEM modeling framework to integrate the driving components for and the interactions among disturbance regimes, permafrost dynamics, hydrology, and vegetation succession/migration for Alaska and Northwest Canada....
This project resulted in an extensive mapping of coastal change along the entire coastline of the Western Alaska Landscape Conservation Cooperative (LCC). The work provides important baseline information on the distribution and magnitude of landscape changes over the past 41 years. The extent of change to the coastline and to coastal features, such as spits, barrier islands, estuaries, tidal guts and lagoons, was known to be substantial in some areas along the coast (e.g., portions of the Yukon–Kuskokwim Delta), although the extent of change along the full Bering Sea coast was not well documented. With this analysis, changes can be summarized for different land ownerships or other units to assess the extent of recent...
Categories: Data; Tags: BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, COASTAL AREAS, All tags...
This project resulted in an extensive mapping of coastal change along the entire coastline of the Western Alaska Landscape Conservation Cooperative (LCC). The work provides important baseline information on the distribution and magnitude of landscape changes over the past 41 years. The extent of change to the coastline and to coastal features, such as spits, barrier islands, estuaries, tidal guts and lagoons, was known to be substantial in some areas along the coast (e.g., portions of the Yukon–Kuskokwim Delta), although the extent of change along the full Bering Sea coast was not well documented. With this analysis, changes can be summarized for different land ownerships or other units to assess the extent of recent...
Categories: Data; Tags: BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, COASTAL AREAS, All tags...
This project established a permafrost monitoring network in this region, providing a baseline of permafrost thermal regimes for assessing future change at a total of 26 automated monitoring stations. Stations have collected year-round temperature data from the active layer and the permafrost starting from the summer of 2011. The strong correspondence between spatial variability in permafrost thermal regime and an existing ecotype map allowed for the development of a map of ‘permafrost thermal classes’ for the broader study region. Further, the annual temperature data was used to calibrate models of soil thermal regimes as a function of climate, providing estimates of both historic and future permafrost thermal regimes...
thumbnail
This data set represents the extent, approximate location and type of wetlands and deepwater habitats in the United States and its Territories. These data delineate the areal extent of wetlands and surface waters as defined by Cowardin et al. (1979). Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and near shore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, Alabama, Alabama, Alaska, Arizona, All tags...
thumbnail
Researchers from the University of Alaska Fairbanks (UAF) willinvestigate glacier-climate interactions within the ArcticNational Wildlife Refuge, including impacts of glacier change onthe downstream aquatic ecosystems. This work builds upon theonly long-term monitoring program of glaciers in Arctic Alaska.


map background search result map search result map National Wetlands Inventory - Wetlands LiDAR Derived Watershed Boundaries for Rainwater Basin Wetlands Summary and Initial Evaluation of Enduring Features Information for the Conterminous USA, with Evaluation of Potential Use for Ecoregion Assessment Climate Change Health Assessments for Three Coastal, Riverine and Lake System Communities Development and Application of an Integrated Ecosystem Model for Alaska Webinar 2016: Networked Monitoring of Salmon Habitat Temperature: Two Case Studies from Southwestern Alaska Glaciers and Rivers in ArcticNWR Factsheet Multispectral aerial imagery collected during unoccupied aircraft systems (UAS) operations in Massachusetts between March 2018 - September 2018 Ground control points collected during unoccupied aircraft systems (UAS) operations in Massachusetts and Maine between March 2018 - September 2018 Multispectral aerial imagery collected during uncrewed aircraft systems (UAS) operations: Assateague Island National Seashore (ASIS), MD, October 10 - 14, 2022 Vegetation surveys, ground reference data, and photos collected during uncrewed aircraft systems (UAS) operations: Assateague Island National Seashore (ASIS), MD, October 10 - 14, 2022 Vegetation surveys, ground reference data, and photos collected during uncrewed aircraft systems (UAS) operations: Assateague Island National Seashore (ASIS), MD, October 10 - 14, 2022 Multispectral aerial imagery collected during uncrewed aircraft systems (UAS) operations: Assateague Island National Seashore (ASIS), MD, October 10 - 14, 2022 Multispectral aerial imagery collected during unoccupied aircraft systems (UAS) operations in Massachusetts between March 2018 - September 2018 Ground control points collected during unoccupied aircraft systems (UAS) operations in Massachusetts and Maine between March 2018 - September 2018 Glaciers and Rivers in ArcticNWR Factsheet LiDAR Derived Watershed Boundaries for Rainwater Basin Wetlands Webinar 2016: Networked Monitoring of Salmon Habitat Temperature: Two Case Studies from Southwestern Alaska Climate Change Health Assessments for Three Coastal, Riverine and Lake System Communities National Wetlands Inventory - Wetlands Summary and Initial Evaluation of Enduring Features Information for the Conterminous USA, with Evaluation of Potential Use for Ecoregion Assessment