Skip to main content
Advanced Search

Filters: Tags: {"type":"Place","name":"conterminous u.s."} (X) > Categories: Map (X) > Types: ArcGIS REST Map Service (X) > partyWithName: C. P. Hawkins (X) > partyWithName: John R. Olson (X)

6 results (50ms)   

View Results as: JSON ATOM CSV
thumbnail
This raster depicts the percentage of lithological the hydraulic conductivity (in micrometers per second) of surface or near surface geology. We derived these rasters by calculating the average conductivity for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater...
thumbnail
This raster depicts the percentage of lithological sulfur (S) content in surface or near surface geology. We derived these rasters by calculating the average percent S content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from Soller et al....
thumbnail
This raster depicts the percentage of lithological nitrogen (N) content in surface or near surface geology. We derived these rasters by calculating the average percent N content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from Soller et...
thumbnail
This raster depicts the percentage of lithological phosphorus pentoxide (P2O5) content in surface or near surface geology. We derived these rasters by calculating the average percent P2O5 content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet...
thumbnail
This raster depicts the percentage of lithological silicon dioxide (SiO2) content in surface or near surface geology. We derived these rasters by calculating the average percent SiO2 content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from...
thumbnail
This raster depicts the percentage of lithological ferric oxide (Fe2O3) content in surface or near surface geology. We derived these rasters by calculating the average percent Fe2O3 content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from...


    map background search result map search result map Geochemical Characteristics of the Conterminous United States: % P2O5 Geophysical Characteristics of the Conterminous United States: Hydraulic Conductivity (µm/s) Geochemical Characteristics of the Conterminous United States: % Sulfur Geochemical Characteristics of the Conterminous United States: % SiO2 Geochemical Characteristics of the Conterminous United States: % Fe2O3 Geochemical Characteristics of the Conterminous United States: % Nitrogen Geochemical Characteristics of the Conterminous United States: % P2O5 Geophysical Characteristics of the Conterminous United States: Hydraulic Conductivity (µm/s) Geochemical Characteristics of the Conterminous United States: % Sulfur Geochemical Characteristics of the Conterminous United States: % SiO2 Geochemical Characteristics of the Conterminous United States: % Fe2O3 Geochemical Characteristics of the Conterminous United States: % Nitrogen