Skip to main content
Advanced Search

Filters: Tags: {"type":"Place","name":"massachusetts"} (X) > Types: Shapefile (X)

221 results (82ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Place )
View Results as: JSON ATOM CSV
thumbnail
This shapefile contains landscape factors representing human disturbances summarized to local and network catchments of river reaches for the state of South Dakota. This dataset is the result of clipping the feature class 'NFHAP 2010 HCI Scores and Human Disturbance Data for the Conterminous United States linked to NHDPLUSV1.gdb' to the state boundary of South Dakota. Landscape factors include land uses, population density, roads, dams, mines, and point-source pollution sites. The source datasets that were compiled and attributed to catchments were identified as being: (1) meaningful for assessing fish habitat; (2) consistent across the entire study area in the way that they were assembled; (3) representative of...
thumbnail
This shapefile contains landscape factors representing human disturbances summarized to local and network catchments of river reaches for the state of Georgia. This dataset is the result of clipping the feature class 'NFHAP 2010 HCI Scores and Human Disturbance Data for the Conterminous United States linked to NHDPLUSV1.gdb' to the state boundary of Georgia. Landscape factors include land uses, population density, roads, dams, mines, and point-source pollution sites. The source datasets that were compiled and attributed to catchments were identified as being: (1) meaningful for assessing fish habitat; (2) consistent across the entire study area in the way that they were assembled; (3) representative of conditions...
thumbnail
This shapefile contains landscape factors representing human disturbances summarized to local and network catchments of river reaches for the state of Louisiana. This dataset is the result of clipping the feature class 'NFHAP 2010 HCI Scores and Human Disturbance Data for the Conterminous United States linked to NHDPLUSV1.gdb' to the state boundary of Louisiana. Landscape factors include land uses, population density, roads, dams, mines, and point-source pollution sites. The source datasets that were compiled and attributed to catchments were identified as being: (1) meaningful for assessing fish habitat; (2) consistent across the entire study area in the way that they were assembled; (3) representative of conditions...
thumbnail
This shapefile contains landscape factors representing human disturbances summarized to local and network catchments of river reaches for the Desert Fish Habitat Partnership. This dataset is the result of clipping the feature class 'NFHAP 2010 HCI Scores and Human Disturbance Data for the Conterminous United States linked to NHDPLUSV1.gdb' to the boundary of the Desert Fish Habitat Partnership. Landscape factors include land uses, population density, roads, dams, mines, and point-source pollution sites. The source datasets that were compiled and attributed to catchments were identified as being: (1) meaningful for assessing fish habitat; (2) consistent across the entire study area in the way that they were assembled;...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Cape Cod, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
We used spatial data from previously mapped preferential groundwater discharges throughout the Farmington River watershed in Connecticut and Massachusetts (https://doi.org/10.5066/P915E8JY) to guide water sample collection at known locations of groundwater discharging to surface water. In 2017 and 2019 - 2021, samples were collected during general river baseflow conditions (July – November, <30.9 cms mean daily discharge (USGS gage 01189995, statistics 2010-2022) when the riverbank discharge points were exposed. We collected a suite of dissolved constituents and stable isotopes of water directly in the shallow saturated sediments of active points of discharge, and coincident stream chemical samples were also collected...
thumbnail
The U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management compiled Massachusetts vector shorelines into an updated dataset for the Office’s Shoreline Change Project. The Shoreline Change Project started in 1989 to identify erosion-prone areas of the Massachusetts coast by compiling a database of historical shoreline positions. Trends of shoreline position over long- and short-term timescales provide information to landowners, managers, and potential buyers about possible future changes to costal resources and infrastructure. This updated dataset strengthens the understanding of shoreline position change in Massachusetts. It includes U.S. Geological Survey vector shorelines...
thumbnail
Areas of groundwater discharge are hydrologically and ecologically important, and yet are difficult to predict at the river network scale. Thermal infrared imagery can be used to identify areas of groundwater discharge based on an observed temperature anomaly (colder during the late summer or warmer during the late winter). The thermal images, direct temperature measurements (11 cm depth) and discharge zone (seep) location information in this data release were collected as part of a study to evaluate and improve predicted spatial patterns of groundwater discharge. The data were collected during the late summer / early fall of 2017 along selected river reaches in the Farmington River watershed (Connecticut and Massachusetts)....
thumbnail
Two marine geological surveys were conducted in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey as part of an agreement with the Massachusetts Office of Coastal Zone Management to map the geology of the sea floor offshore of Massachusetts. Samples of surficial sediment and photographs of the sea floor were collected at 76 sampling sites within the survey area, and sea-floor videos were collected at 75 of the sites. The sediment data and the observations from the photos and videos are used to explore the nature of the sea floor; in conjunction with high-resolution geophysical data, the observations are used to make interpretive maps of sedimentary environments and validate acoustic...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Ocean, CMHRP, CZM, Coastal and Marine Hazards and Resources Program, MA CZM, All tags...


map background search result map search result map National Fish Habitat Action Plan (NFHAP) 2010 HCI Scores and Human Disturbance Data (linked to NHDPLUSV1) for Desert Fish Habitat Partnership South Dakota: NFHAP 2010 HCI Scores and Disturbances Georgia: NFHAP 2010 HCI Scores and Disturbances Louisiana: NFHAP 2010 HCI Scores and Disturbances Ports of the United States Intersects for Martha's Vineyard, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Buzzards Bay coastal region in Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Thermal infrared images and direct temperature measurements of groundwater discharge zones throughout the Farmington River watershed (Connecticut and Massachusetts) points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Monomoy Island, MA, 2013-2014 Development: Development delineation: Parker River, MA, 2014 Sea-floor videos and location of bottom video tracklines collected in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey during field activities 2016-005-FA and 2017-022-FA (MP4 video files and polyline shapefile) Elevation of marsh units in Massachusetts salt marshes Mean tidal range of marsh units in Massachusetts salt marshes Historical shoreline positions for the coast of MA, from 1844 - 2014 Intersects for the coastal region around Boston, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Buzzards Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for the region of Buzzards Bay, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Cape Cod Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Baselines for Outer Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Biogeochemical and source characteristics of preferential groundwater discharge in the Farmington River watershed (Connecticut and Massachusetts, 2017 - 2021) Development: Development delineation: Parker River, MA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Monomoy Island, MA, 2013-2014 Sea-floor videos and location of bottom video tracklines collected in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey during field activities 2016-005-FA and 2017-022-FA (MP4 video files and polyline shapefile) Intersects for the coastal region around Boston, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Buzzards Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for the region of Buzzards Bay, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Intersects for the Buzzards Bay coastal region in Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for coastal region of Cape Cod Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Thermal infrared images and direct temperature measurements of groundwater discharge zones throughout the Farmington River watershed (Connecticut and Massachusetts) Biogeochemical and source characteristics of preferential groundwater discharge in the Farmington River watershed (Connecticut and Massachusetts, 2017 - 2021) Historical shoreline positions for the coast of MA, from 1844 - 2014 Mean tidal range of marsh units in Massachusetts salt marshes Elevation of marsh units in Massachusetts salt marshes Louisiana: NFHAP 2010 HCI Scores and Disturbances Georgia: NFHAP 2010 HCI Scores and Disturbances South Dakota: NFHAP 2010 HCI Scores and Disturbances National Fish Habitat Action Plan (NFHAP) 2010 HCI Scores and Human Disturbance Data (linked to NHDPLUSV1) for Desert Fish Habitat Partnership Ports of the United States