Skip to main content
Advanced Search

Filters: Tags: {"type":"Theme","scheme":"ISO 19115 Topic Category"} (X) > partyWithName: Peter S Coates (X)

86 results (42ms)   

View Results as: JSON ATOM CSV
thumbnail
wy_lvl7_coarsescale: Wyoming hierarchical cluster level 7 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California. HSIs were calculated for spring (mid-March to June), summer (July to mid-October), and winter (November to March) sage-grouse seasons, and then multiplied together to create this composite dataset.
thumbnail
wy_lvl2_finescale: Wyoming hierarchical cluster level 2 (fine-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
Twenty quadrats within the burn perimeter of a September 2021 wildfire outside of Boise, Idaho were surveyed for the abundance of fire effects, biocrusts and vascular plants immediately post-fire. The fire was too small to be named. Char was measured as a proxy for fire intensity. Biocrusts were surveyed by morphogroup (crustose lichens, cup lichens, fruticose lichens, gelatinous lichens, short moss, tall moss) and vascular plants were surveyed by functional group (annual forbs, perennial grasses). Char was measured ocularly and biocrust/plant abundance was measured via point-vertex intercept at 40 points per quadrat. These data support the following publication: Condon, L.A., Shinneman, D.J., Rosentreter, R. and...
thumbnail
These tables serve as input data for hierarchical models investigating interactions between raven density and Greater Sage-grouse nest success. Observations were recorded over an 11 year time period, spanning from 2009 through 2019. The model is run in JAGS via R, the code is publicly available via the U.S. Geological Survey's GitLab (O'Neil et al. 2023). We recommend not making any changes or edits to the tables unless the user is experienced with hierarchical modeling. References: O'Neil, S.T., Coates, P.S., Webster, S.C., Brussee, B.E., Dettenmaier, S.J., Tull, J.C., Jackson, P.J., Casazza, M.L., and Espinosa, S.P., 2023, Code for a hierarchical model of raven densities linked with sage-grouse nest survival...
thumbnail
We present five hierarchical demarcations of greater sage-grouse population structure, representing the spatial structure of populations which can exist due to differences in dispersal abilities, landscape configurations, and mating behavior. These demarcations represent Thiessen polygons of graph constructs (least-cost path [LCP] minimum spanning trees [MST; LCP-MST]) representing greater sage-grouse population structure. Because the graphs included locational information of sage-grouse breeding sites, we have provided polygons of the population structure. We also present two results using graph analytics representing node/connectivity importance based on our population structure. Understanding wildlife population...
thumbnail
We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different population growth rates among smaller clusters. Equally so, the spatial structure and ecological...
thumbnail
nv_lvl6_coarsescale: Nevada hierarchical cluster level 6 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl8_coarsescale: Wyoming hierarchical cluster level 8 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
Predicted common raven (Corvus corax) impacts within greater sage-grouse (Centrocercus urophasianus) concentration areas across the Great Basin, USA, 2007–2016. Predicted impacts were based on a raven density of great than or equal to 0.40 (ravens per square kilometer) which corresponded to below-average survival rates of sage-grouse nests. These data support the following publication: Coates, P.S., O'Neil, S.T., Brussee, B.E., Ricca, M.A., Jackson, P.J., Dinkins, J.B., Howe, K.B., Moser, A.M., Foster, L.J. and Delehanty, D.J., 2020. Broad-scale impacts of an invasive native predator on a sensitive native prey species within the shifting avian community of the North American Great Basin. Biological Conservation,...
thumbnail
Average and standard deviation of annual predicted common raven (Corvus corax) density (ravens per square kilometer) derived from random forest models given field site unit-specific estimates of raven density that were obtained from hierarchical distance sampling models at 43 field site units within the Great Basin region, USA. Fifteen landscape-level predictors summarizing climate, vegetation, topography and anthropogenic footprint were used to predict average raven density at each unit. These data support the following publication: Coates, P.S., O'Neil, S.T., Brussee, B.E., Ricca, M.A., Jackson, P.J., Dinkins, J.B., Howe, K.B., Moser, A.M., Foster, L.J. and Delehanty, D.J., 2020. Broad-scale impacts of an invasive...
thumbnail
We evaluated the expected success of habitat recovery in priority areas under 3 different restoration scenarios: passive, planting, and seeding. Passive means no human intervention following a fire disturbance. Under a planting scenario, field technicians methodically plant young sagebrush saplings at the burned site. The seeding scenario involves distributing large amounts of sagebrush seeds throughout the affected area.
thumbnail
Monitoring change in genetic diversity in wildlife populations across multiple scales could facilitate prioritization of conservation efforts. We used microsatellite genotypes from 7,080 previously collected genetic samples from across the greater sage-grouse (Centrocercus urophasianus) range to develop a modelling framework for estimating genetic diversity within a recently developed hierarchically nested monitoring framework (clusters). The majority of these genetic samples (n=6560) were used in previous research (Oyler-McCance et al. 2014; Cross et. al 2018; Row et. al. 2018). Genetic diversity values associated with clusters across multiple scales could facilitate the identification of areas with low genetic...
thumbnail
We examined nest survival of Greater Sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse) in relation to fine-scale habitat patterns that influenced nest site selection, using data from nests of telemetered females at 17 sites across 6 years in Nevada and northeastern California, USA. Importantly, sites spanned mesic and xeric average precipitation conditions and concomitant vegetation community structure across cold desert ecosystems of the North American Great Basin. Vegetative cover immediately surrounding sage-grouse nests was important for both nest site selection and nest survival, but responses varied between mesic and xeric sites. For example, while taller perennial grass was selected at xeric...
thumbnail
Predictions of raven occurrence in the absence of anthropogenic environmental effects. Raven point counts were related to landscape covariates using Bayesian hierarchical occupancy models and the means of the posterior distributions for relevant effects were used to generate the predictions.
thumbnail
Escalated wildfire activity within the western U.S. has widespread societal impacts and long-term consequences for the imperiled sagebrush (Artemisia spp.) biome. Shifts from historical fire regimes and the interplay between frequent disturbance and invasive annual grasses may initiate permanent state transitions as wildfire frequency outpaces sagebrush communities’ innate capacity to recover. Therefore, wildfire management is at the core of conservation plans for sagebrush ecosystems, especially critical habitat for species of conservation concern such as the greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse). Fuel breaks help facilitate wildfire suppression by modifying behavior through fuels...
thumbnail
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during the winter season (November to March), and is a surrogate for habitat conditions during periods of cold and snow.
thumbnail
Map of cumulative 38-day nest survival predicted from a Bayesian hierarchical shared frailty model of sage-grouse nest fates. The midpoint of coefficient conditional posterior distributions of 38-day nest survival were used for prediction at each 30 meter pixel across the landscape.


map background search result map search result map Raven study site locations in the Great Basin, derived from survey locations 2007 - 2016 Predictions of raven occurrence in the absence of anthropogenic environmental effects in the Great Basin, 2007-2016 (Fig. 4B) Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Nevada and Wyoming, Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 8 (Wyoming), Interim Composite Habitat Suitability Index Raster Dataset Winter Season Habitat Categories Shapefile Raven Impacts within Greater Sage-grouse Concentration Areas within the Great Basin Region of the United States 2007 - 2016 Average and Standard Deviation of Annual Predicted Raven Density in the Great Basin, Western U.S. Greater Sage-grouse Nest Survival, Nevada and California 2019 Greater sage-grouse population structure and connectivity data to inform the development of hierarchical population units (western United States) Genotypes and cluster definitions for a range-wide greater sage-grouse dataset collected 2005-2017 (ver 1.1, January 2023) Fire Response Effects, Biocrust, and Vascular Plant Abundance Following Wildfire near Boise, Idaho (October 2021) Sagebrush Restoration Under Passive, Planting, and Seeding Scenarios Following Fire Disturbance in the Virginia Mountains, Nevada (2018) Microhabitat Characteristics Influencing Sage-Grouse Nest Site Selection and Survival, Nevada and California (2012-2017) Predictive Maps of Fuel Break Effectiveness by Treatment Type and Underlying Resilience to Disturbance and Resistance to Invasion Across the Western U.S. Raven Observations near Greater Sage-Grouse Nests in the Great Basin and Bi-State Regions of the Western United States (2009 - 2019) Sagebrush Restoration Under Passive, Planting, and Seeding Scenarios Following Fire Disturbance in the Virginia Mountains, Nevada (2018) Fire Response Effects, Biocrust, and Vascular Plant Abundance Following Wildfire near Boise, Idaho (October 2021) Composite Habitat Suitability Index Raster Dataset Winter Season Habitat Categories Shapefile Greater Sage-grouse Nest Survival, Nevada and California 2019 Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 8 (Wyoming), Interim Microhabitat Characteristics Influencing Sage-Grouse Nest Site Selection and Survival, Nevada and California (2012-2017) Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Nevada), Interim Raven Observations near Greater Sage-Grouse Nests in the Great Basin and Bi-State Regions of the Western United States (2009 - 2019) Raven study site locations in the Great Basin, derived from survey locations 2007 - 2016 Raven Impacts within Greater Sage-grouse Concentration Areas within the Great Basin Region of the United States 2007 - 2016 Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) Average and Standard Deviation of Annual Predicted Raven Density in the Great Basin, Western U.S. Predictions of raven occurrence in the absence of anthropogenic environmental effects in the Great Basin, 2007-2016 (Fig. 4B) Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Nevada and Wyoming, Interim Genotypes and cluster definitions for a range-wide greater sage-grouse dataset collected 2005-2017 (ver 1.1, January 2023) Greater sage-grouse population structure and connectivity data to inform the development of hierarchical population units (western United States) Predictive Maps of Fuel Break Effectiveness by Treatment Type and Underlying Resilience to Disturbance and Resistance to Invasion Across the Western U.S.