Skip to main content
Advanced Search

Filters: Tags: {"type":"Theme"} (X) > partyWithName: Peter S Coates (X)

122 results (9ms)   

Filters
Contacts (Less)
View Results as: JSON ATOM CSV
thumbnail
wy_lvl7_coarsescale: Wyoming hierarchical cluster level 7 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California. HSIs were calculated for spring (mid-March to June), summer (July to mid-October), and winter (November to March) sage-grouse seasons, and then multiplied together to create this composite dataset.
thumbnail
wy_lvl2_finescale: Wyoming hierarchical cluster level 2 (fine-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
This USGS data release represents geospatial data for the sage-grouse habitat mapping project. This study provides timely and highly useful information about greater sage-grouse over a large area of the Great Basin. USGS researchers and their colleagues created a template for combining landscape-scale occurrence or abundance data with habitat selection data in order to identify areas most critical to sustaining populations of species of conservation concern. The template also identifies those areas where land use changes have minimal impact. To inform greater sage-grouse conservation planning, the researchers developed greater sage-grouse habitat management categories based on habitat selection indices (HSI) and...
thumbnail
Twenty quadrats within the burn perimeter of a September 2021 wildfire outside of Boise, Idaho were surveyed for the abundance of fire effects, biocrusts and vascular plants immediately post-fire. The fire was too small to be named. Char was measured as a proxy for fire intensity. Biocrusts were surveyed by morphogroup (crustose lichens, cup lichens, fruticose lichens, gelatinous lichens, short moss, tall moss) and vascular plants were surveyed by functional group (annual forbs, perennial grasses). Char was measured ocularly and biocrust/plant abundance was measured via point-vertex intercept at 40 points per quadrat. These data support the following publication: Condon, L.A., Shinneman, D.J., Rosentreter, R. and...
thumbnail
Sage-grouse habitat areas divided into proposed management categories within Nevada and California project study boundaries. HABITAT CATEGORY DETERMINATION The process for category determination was directed by the Nevada Sagebrush Ecosystem Technical team. Sage-grouse habitat was determined from a statewide resource selection function model and first categorized into 4 classes: high, moderate, low, and non-habitat. The standard deviations (SD) from a normal distribution of RSF values created from a set of validation points (10% of the entire telemetry dataset) were used to categorize habitat ‘quality’ classes. 1) High quality habitat comprised pixels with RSF values < 0.5 SD. 2) Moderate > 0.5 and < 1.0 SD. 3)...
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI,created using ArcGIS 10.2.2) values for Nevada during the breeding season.
thumbnail
These tables serve as input data for hierarchical models investigating interactions between raven density and Greater Sage-grouse nest success. Observations were recorded over an 11 year time period, spanning from 2009 through 2019. The model is run in JAGS via R, the code is publicly available via the U.S. Geological Survey's GitLab (O'Neil et al. 2023). We recommend not making any changes or edits to the tables unless the user is experienced with hierarchical modeling. References: O'Neil, S.T., Coates, P.S., Webster, S.C., Brussee, B.E., Dettenmaier, S.J., Tull, J.C., Jackson, P.J., Casazza, M.L., and Espinosa, S.P., 2023, Code for a hierarchical model of raven densities linked with sage-grouse nest survival...
thumbnail
We present five hierarchical demarcations of greater sage-grouse population structure, representing the spatial structure of populations which can exist due to differences in dispersal abilities, landscape configurations, and mating behavior. These demarcations represent Thiessen polygons of graph constructs (least-cost path [LCP] minimum spanning trees [MST; LCP-MST]) representing greater sage-grouse population structure. Because the graphs included locational information of sage-grouse breeding sites, we have provided polygons of the population structure. We also present two results using graph analytics representing node/connectivity importance based on our population structure. Understanding wildlife population...
thumbnail
We used a hierarchical Bayesian modeling framework to estimate resource selection functions and survival for early and late brood-rearing stages of sage-grouse in relation to a broad suite of habitat characteristics evaluated at multiple spatial scales within the Great Basin from 2009 to 2019. Sage-grouse selected for greater perennial grass cover, higher relative elevations, and areas closer to springs and wet meadows during both early and late brood-rearing. Terrain characteristics, including heat load and aspect, were important in survival models, as was variation in shrub height. We also found strong evidence for higher survival for both early and late broods within previously burned areas, but survival within...
thumbnail
Ranked habitat classes for sage-grouse brood-rearing productivity at each 90 m pixel. Habitat classes represent areas where high brood selection and high brood survival intersected, whereas the lowest ranks represent areas where high brood habitat selection intersected with the low brood survival. Hierarchical models of brood selection and survival were fit to landscape covariates within a Bayesian modeling framework in Nevada and California from 2009 - 2017 to develop spatially explicit information about brood habitat selection and survival.
thumbnail
We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different population growth rates among smaller clusters. Equally so, the spatial structure and ecological...
thumbnail
nv_lvl6_coarsescale: Nevada hierarchical cluster level 6 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl8_coarsescale: Wyoming hierarchical cluster level 8 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
This U.S. Geological Survey Data Release contains the data and metadata associated with the journal article. Parental incubation behavior largely influences nest survival, a critical demographic process in avian population dynamics, and behaviors vary across species with different life history breeding strategies. Although research has identified nest survival advantages of mixing colonies, behavioral mechanisms that might explain these effects is largely lacking. We examined parental incubation behavior using video-monitoring techniques on Alcatraz Island, California, of black-crowned night-heron Nycticorax nycticorax (hereinafter, night-heron) in a mixed-species colony with California gulls Larus californicus...
thumbnail
Predicted common raven (Corvus corax) impacts within greater sage-grouse (Centrocercus urophasianus) concentration areas across the Great Basin, USA, 2007–2016. Predicted impacts were based on a raven density of great than or equal to 0.40 (ravens per square kilometer) which corresponded to below-average survival rates of sage-grouse nests. These data support the following publication: Coates, P.S., O'Neil, S.T., Brussee, B.E., Ricca, M.A., Jackson, P.J., Dinkins, J.B., Howe, K.B., Moser, A.M., Foster, L.J. and Delehanty, D.J., 2020. Broad-scale impacts of an invasive native predator on a sensitive native prey species within the shifting avian community of the North American Great Basin. Biological Conservation,...
thumbnail
Average and standard deviation of annual predicted common raven (Corvus corax) density (ravens per square kilometer) derived from random forest models given field site unit-specific estimates of raven density that were obtained from hierarchical distance sampling models at 43 field site units within the Great Basin region, USA. Fifteen landscape-level predictors summarizing climate, vegetation, topography and anthropogenic footprint were used to predict average raven density at each unit. These data support the following publication: Coates, P.S., O'Neil, S.T., Brussee, B.E., Ricca, M.A., Jackson, P.J., Dinkins, J.B., Howe, K.B., Moser, A.M., Foster, L.J. and Delehanty, D.J., 2020. Broad-scale impacts of an invasive...
thumbnail
We evaluated the expected success of habitat recovery in priority areas under 3 different restoration scenarios: passive, planting, and seeding. Passive means no human intervention following a fire disturbance. Under a planting scenario, field technicians methodically plant young sagebrush saplings at the burned site. The seeding scenario involves distributing large amounts of sagebrush seeds throughout the affected area.


map background search result map search result map Sage-grouse Habitat Categories in Nevada and NE California (August 2014) Integrating Spatially Explicit Indices of Abundance and Habitat Quality: An Applied Example for Greater Sage-grouse Management The Effects of Heterospecifics and Climatic Conditions on Incubation Behavior within a Mixed-Species Colony Spring Season Habitat Suitability Index raster dataset Raven study site locations in the Great Basin, derived from survey locations 2007 - 2016 Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Nevada and Wyoming, Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 8 (Wyoming), Interim Composite Habitat Suitability Index Raster Dataset Raven Impacts within Greater Sage-grouse Concentration Areas within the Great Basin Region of the United States 2007 - 2016 Average and Standard Deviation of Annual Predicted Raven Density in the Great Basin, Western U.S. Greater sage-grouse population structure and connectivity data to inform the development of hierarchical population units (western United States) Fire Response Effects, Biocrust, and Vascular Plant Abundance Following Wildfire near Boise, Idaho (October 2021) Spatially-Explicit Predictive Maps of Greater Sage-Grouse Brood Selection Integrated with Brood Survival in Nevada and Northeastern California, USA Ranked Habitat Classes for Sage-Grouse Brood-Rearing Productivity, Nevada and California Sagebrush Restoration Under Passive, Planting, and Seeding Scenarios Following Fire Disturbance in the Virginia Mountains, Nevada (2018) Raven Observations near Greater Sage-Grouse Nests in the Great Basin and Bi-State Regions of the Western United States (2009 - 2019) The Effects of Heterospecifics and Climatic Conditions on Incubation Behavior within a Mixed-Species Colony Sagebrush Restoration Under Passive, Planting, and Seeding Scenarios Following Fire Disturbance in the Virginia Mountains, Nevada (2018) Fire Response Effects, Biocrust, and Vascular Plant Abundance Following Wildfire near Boise, Idaho (October 2021) Composite Habitat Suitability Index Raster Dataset Integrating Spatially Explicit Indices of Abundance and Habitat Quality: An Applied Example for Greater Sage-grouse Management Spring Season Habitat Suitability Index raster dataset Spatially-Explicit Predictive Maps of Greater Sage-Grouse Brood Selection Integrated with Brood Survival in Nevada and Northeastern California, USA Ranked Habitat Classes for Sage-Grouse Brood-Rearing Productivity, Nevada and California Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 8 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Nevada), Interim Sage-grouse Habitat Categories in Nevada and NE California (August 2014) Raven Observations near Greater Sage-Grouse Nests in the Great Basin and Bi-State Regions of the Western United States (2009 - 2019) Raven study site locations in the Great Basin, derived from survey locations 2007 - 2016 Raven Impacts within Greater Sage-grouse Concentration Areas within the Great Basin Region of the United States 2007 - 2016 Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) Average and Standard Deviation of Annual Predicted Raven Density in the Great Basin, Western U.S. Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Nevada and Wyoming, Interim Greater sage-grouse population structure and connectivity data to inform the development of hierarchical population units (western United States)